Identities and Computation Formulas for Combinatorial Numbers Including Negative Order Changhee Polynomials
Abstract
:1. Introduction
Combinatorial Numbers
2. Changhee Polynomials of Negative Order
Computation Formula for Changhee Polynomials of Negative Order
3. Partial Derivative of the Generating Function
4. Integral Representations for Negative Order Changhee Polynomials
4.1. Riemann Integral Representation for Negative Order Changhee Polynomials
4.2. p-Adic Integral Representations for Negative Order Changhee Polynomials
5. Identities and Relations
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Simsek, Y. Generation functions for finite sums involving higher powers of binomial coeffcients: Analysis of hypergeometric functions including new families of polynomials and numbers. J. Math. Anal. Appl. 2019, 477, 1328–1352. [Google Scholar] [CrossRef] [Green Version]
- Khan, S.; Nahid, T.; Riyasat, M. Partial derivative formulas and identities involving 2-variable Simsek polynomials. Boletín de la Sociedad Matemática Mexicana 2019. [Google Scholar] [CrossRef]
- Kucukoglu, I. Derivative formulas related to unification of generating functions for Sheffer type sequences. AIP Conf. Proc. 2019, 2116, 100016. [Google Scholar]
- Kucukoglu, I.; Simsek, Y. On a family of special numbers and polynomials associated with Apostol-type numbers and polynomials and combinatorial numbers. Appl. Anal. Discrete Math. 2019, 13, 478–494. [Google Scholar] [CrossRef] [Green Version]
- Kucukoglu, I.; Simsek, B.; Simsek, Y. An approach to negative hypergeometric distribution by generating function for special numbers and polynomials. Turk. J. Math. 2019, 43, 2337–2353. [Google Scholar] [CrossRef]
- Kucukoglu, I.; Simsek, B.; Simsek, Y. Generating Functions for New Families of Combinatorial Numbers and Polynomials: Approach to Poisson–Charlier Polynomials and Probability Distribution Function. Axioms 2019, 8, 112. [Google Scholar] [CrossRef] [Green Version]
- Simsek, Y. Construction of some new families of Apostol-type numbers and polynomials via Dirichlet character and p-adic q-integrals. Turk. J. Math. 2018, 42, 557–577. [Google Scholar] [CrossRef] [Green Version]
- Simsek, Y. New families of special numbers for computing negative order Euler numbers and related numbers and polynomials. Appl. Anal. Discrete Math. 2018, 12, 1–35. [Google Scholar] [CrossRef]
- Simsek, Y. Computation methods for combinatorial sums and Euler type numbers related to new families of numbers. Math. Meth. Appl. Sci. 2017, 40, 2347–2361. [Google Scholar] [CrossRef] [Green Version]
- Boas, R.P.; Buck, R.C. Polynomial Expansions of Analytic Functions; Academic Press: New York, NY, USA, 1964; p. 37. [Google Scholar]
- Simsek, Y. Peters type polynomials and numbers and their generating functions: Approach with p-adic integral method. Math. Meth. Appl. Sci. 2019, 7030–7046. [Google Scholar] [CrossRef]
- Cakic, N.P.; El-Desouky, B.S.; Milovanovic, G.V. Explicit formulas and combinatorial identities for generalized Stirling numbers. Mediterr. J. Math. 2013, 10, 57–72. [Google Scholar] [CrossRef]
- Comtet, L. Advanced Combinatorics: The Art of Finite and Infinite Expansions; Translated from the French by J. W. Nienhuys; Reidel: Dordrecht, The Netherlands; Boston, MA, USA, 1974. [Google Scholar]
- Jordan, C. Calculus of Finite Differences, 2nd ed.; Chelsea Pub. Comp.: New York, NY, USA, 1950. [Google Scholar]
- Golombek, R. Aufgabe 1088. Elem. Math. 1994, 49, 126–127. [Google Scholar]
- Kim, D.S.; Kim, T. Barnes-Type Boole polynomials. Contrib. Discret. Math. 2016, 11, 715. [Google Scholar]
- Kim, D.S.; Kim, T.; Seo, J. A note on Changhee numbers and polynomials. Adv. Stud. Theor. Phys. 2013, 7, 993–1003. [Google Scholar] [CrossRef]
- Kim, D.S.; Kim, T. Daehee numbers and polynomials. Appl. Math. Sci. (Ruse) 2013, 7, 5969–5976. [Google Scholar] [CrossRef] [Green Version]
- Kim, D.S.; Kim, T.; Seo, J.J. Higher-order Changhee numbers and polynomials. Adv. Stud. Theor. Phys. 2014, 8, 365–373. [Google Scholar] [CrossRef] [Green Version]
- Kim, D.S.; Kim, T.; Lee, S.H.; Seo, J. Higher-order Daehee numbers and polynomials. Int. J. Math. Anal. 2014, 8, 273–283. [Google Scholar] [CrossRef]
- Kim, D.S.; Kim, T. A Note on Boole polynomials. Integ. Trans. Sp. Funct. 2014, 4, 1–7. [Google Scholar] [CrossRef]
- Kim, D.S.; Kim, T.; Park, J.W.; Seo, J.J. Differential equations associated with Peters polynomials. Glob. J. Pure Appl. Math. 2016, 12, 2915–2922. [Google Scholar]
- Kim, D.S.; Kim, T.; Komatsu, T.; Kwon, H.I.; Lee, S.H. Barnes-type Peters polynomials associated with poly-Cauchy polynomials of the second kind. J. Comput. Anal. Appl. 2016, 20, 1–24. [Google Scholar]
- Kim, M.S. On Euler Numbers, Polynomials and Related p-adic Integrals. J. Number Theory 2009, 129, 2166–2179. [Google Scholar] [CrossRef] [Green Version]
- Kim, T.; Dolgy, D.V.; Kim, D.S.; Seo, J.J. Differential equations for Changhee polynomials and their applications. J. Nonlinear Sci. Appl. 2016, 9, 2857–2864. [Google Scholar] [CrossRef] [Green Version]
- Kim, T. q-Euler Numbers and Polynomials Associated with p-adic q-Integral and Basic q-zeta Function. Trend Math. Inf. Cent. Math. Sci. 2006, 9, 7–12. [Google Scholar]
- Kilar, N.; Simsek, Y. A new family of Fubini type numbers and polynomials associated with Apostol-Bernoulli numbers and polynomials. J. Korean Math. Soc. 2017, 54, 1605–1621. [Google Scholar]
- Kruchinin, D.V.; Kruchinin, V.V. Application of a composition of generating functions for obtaining explicit formulas of polynomials. J. Math. Anal. Appl. 2013, 404, 161–171. [Google Scholar] [CrossRef]
- Kwon, J.; Park, J.W. On modified degenerate Changhee polynomials and numbers. J. Nonlinear Sci. Appl. 2016, 9, 6294–6301. [Google Scholar] [CrossRef]
- Lim, D. Fourier series of higher-order Daehee and Changhee functions and their applications. J. Inequal. Appl. 2017, 2017, 150. [Google Scholar] [CrossRef] [Green Version]
- Luo, Q.-M.; Srivastava, H.M. Some generalizations of the Apostol-Genocchi polynomials and the Stirling numbers of the second kind. Appl. Math. Comput. 2011, 217, 5702–5728. [Google Scholar] [CrossRef]
- Rim, S.H.; Park, J.W.; Pyo, S.S.; Kwon, J. The n-th twisted Changhee polynomials and numbers. Bull. Korean Math. Soc. 2015, 52, 741–749. [Google Scholar] [CrossRef] [Green Version]
- Roman, S. The Umbral Calculus; Academic Press: New York, NY, USA, 1984. [Google Scholar]
- Schikhof, H.W. Ultrametric Calculus: An Introduction to p-Adic Analysis; Cambridge Studies in Advanced Mathematics 4; Cambridge University Press: Cambridge, UK, 1984. [Google Scholar]
- Simsek, Y. Generating functions for generalized Stirling type numbers, array type polynomials, Eulerian type polynomials and their applications. Fixed Point Theory Appl. 2013, 87, 343–355. [Google Scholar] [CrossRef] [Green Version]
- Simsek, Y. Analysis of the p-adic q-Volkenborn integrals: An approach to generalized Apostol-type special numbers and polynomials and their applications. Cogent Math. 2016, 3, 1–17. [Google Scholar] [CrossRef]
- Simsek, Y. Apostol type Daehee numbers and polynomials. Adv. Stud. Contemp. Math. 2016, 26, 1–12. [Google Scholar]
- Simsek, Y. Identities on the Changhee numbers and Apostol-Daehee polynomials. Adv. Stud. Contemp. Math. 2017, 27, 199–212. [Google Scholar]
- Simsek, Y. Construction method for generating functions of special numbers and polynomials arising from analysisof new operators. Math. Meth. Appl. Sci. 2018, 41, 6934–6954. [Google Scholar] [CrossRef]
- Simsek, Y. Explicit formulas for p-adic integrals: approach to p-adic distributions and some families of special numbers and polynomials. Montes Taurus J. Pure Appl. Math. 2019, 1, 1–76. [Google Scholar]
- Simsek, Y.; So, J.S. Identities, inequalities for Boole type polynomials: Approach to generating functions and infinite series. J. Inequal. Appl. 2019, 2019, 62. [Google Scholar] [CrossRef] [Green Version]
- Simsek, Y.; So, J.S. On generating functions for Boole type polynomials and numbers of higher order and their applications. Symmetry 2019, 11, 352. [Google Scholar] [CrossRef] [Green Version]
- Srivastava, H.M. Some generalizations and basic (or q-) extensions of the Bernoulli, Euler and Genocchi polynomials. Appl. Math. Inf. Sci. 2011, 5, 390–444. [Google Scholar]
- Srivastava, H.M.; Kucukoglu, I.; Simsek, Y. Partial differential equations for a new family of numbers and polynomials unifying the Apostol-type numbers and the Apostol-type polynomials. J. Number. Theory 2017, 181, 117–146. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Kucukoglu, I.; Simsek, Y. A new family of Lerch-type zeta functions interpolating a certain class of higher-order Apostol-type numbers and Apostol-type polynomials. Quaest. Math. 2018, 42, 1–14. [Google Scholar]
- Srivastava, H.M.; Choi, J. Zeta and q-Zeta Functions and Associated Series and Integrals; Elsevier Science Publishers: Amsterdam, The Netherlands; London, UK; New York, NY, USA, 2012. [Google Scholar]
- Xu, A. On an open problem of Simsek concerning the computation of a family of special numbers. Appl. Anal. Discrete Math. 2019, 13, 61–72. [Google Scholar] [CrossRef]
- Volkenborn, A. On Generalized p-adic Integration. Mém. Soc. Math. Fr. 1974, 39–40, 375–384. [Google Scholar] [CrossRef] [Green Version]
0 | 1 | 1 |
1 | ||
2 | ||
3 | ||
4 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, D.; Simsek, Y.; So, J.S. Identities and Computation Formulas for Combinatorial Numbers Including Negative Order Changhee Polynomials. Symmetry 2020, 12, 9. https://doi.org/10.3390/sym12010009
Kim D, Simsek Y, So JS. Identities and Computation Formulas for Combinatorial Numbers Including Negative Order Changhee Polynomials. Symmetry. 2020; 12(1):9. https://doi.org/10.3390/sym12010009
Chicago/Turabian StyleKim, Daeyeoul, Yilmaz Simsek, and Ji Suk So. 2020. "Identities and Computation Formulas for Combinatorial Numbers Including Negative Order Changhee Polynomials" Symmetry 12, no. 1: 9. https://doi.org/10.3390/sym12010009