Sixteenth-Order Optimal Iterative Scheme Based on Inverse Interpolatory Rational Function for Nonlinear Equations
Abstract
1. Introduction
2. Construction of the Proposed Optimal Scheme
Special Cases
- We assume an optimal eighth-order technique suggested scheme by Cordero et al. [13]. By using this scheme, we obtain the following new optimal 16-order schemewhere , provided . Let us consider and in the above scheme, recalled by .
- Again, we consider another optimal 8-order scheme presented by Behl and Motsa in [11]. In this way, we obtain another new optimal family of 16-order methods, which is given bywhere . We chose in this expression, called by .
- Let us choose one more optimal 8-order scheme proposed by Džuníc and Petkovíc [15]. Therefore, we haveLet us call the above scheme by .
- Now, we pick another optimal family of eighth-order iterative methods given by Bi et al. in [12]. By adopting this scheme, we further havewhere and is finite difference of first order. Let us consider in the above scheme, denoted by .In similar fashion, we can develop several new and interesting optimal sixteenth-order schemes by considering any optimal eighth-order scheme from the literature whose first sub-step employs the classical Newton’s method.
3. Numerical Experiments
| [11] | |
| [16] | |
| [18] | |
| [20] | |
| [4] | |
| [12] | |
| [6] | |
| [2] | |
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Traub, J.F. Iterative Methods for the Solution of Equations; Prentice-Hall: Englewood Cliffs, NJ, USA, 1964. [Google Scholar]
- Petković, M.S.; Neta, B.; Petković, L.D.; Džunić, J. Multipoint Methods for Solving Nonlinear Equations; Academic Press: New York, NY, USA, 2012. [Google Scholar]
- Geum, Y.H.; Kim, Y.I. A family of optimal sixteenth-order multipoint methods with a linear fraction plus a trivariate polynomial as the fourth-step weighting function. Comput. Math. Appl. 2011, 61, 3278–3287. [Google Scholar] [CrossRef]
- Geum, Y.H.; Kim, Y.I. A biparametric family of optimally convergent sixteenth-order multipoint methods with their fourth-step weighting function as a sum of a rational and a generic two-variable function. J. Comput. Appl. Math. 2011, 235, 3178–3188. [Google Scholar] [CrossRef]
- Kung, H.T.; Traub, J.F. Optimal order of one-point and multi-point iteration. J. ACM 1974, 21, 643–651. [Google Scholar] [CrossRef]
- Neta, B. On a family of multipoint methods for non-linear equations. Int. J. Comput. Math. 1981, 9, 353–361. [Google Scholar] [CrossRef]
- Sharma, J.R.; Guha, R.K.; Gupta, P. Improved King’s methods with optimal order of convergence based on rational approximations. Appl. Math. Lett. 2013, 26, 473–480. [Google Scholar] [CrossRef]
- Ullah, M.Z.; Al-Fhaid, A.S.; Ahmad, F. Four-Point Optimal Sixteenth-Order Iterative Method for Solving Nonlinear Equations. J. Appl. Math. 2013, 2013, 850365. [Google Scholar] [CrossRef]
- Sharifi, S.; Salimi, M.; Siegmund, S.; Lotfi, T. A new class of optimal four-point methods with convergence order 16 for solving nonlinear equations. Math. Comput. Simul. 2016, 119, 69–90. [Google Scholar] [CrossRef]
- Behl, R.; Amat, S.; Magreñán, Á.A.; Motsa, S.S. An efficient optimal family of sixteenth order methods for nonlinear models. J. Comput. Appl. Math. 2019, 354, 271–285. [Google Scholar] [CrossRef]
- Behl, R.; Motsa, S.S. Geometric construction of eighth-order optimal families of ostrowski’s method. Sci. World J. 2015, 2015, 11. [Google Scholar] [CrossRef] [PubMed]
- Bi, W.; Ren, H.; Wu, Q. Three-step iterative methods with eighth-order convergence for solving nonlinear equations. J. Comput. Appl. Math. 2009, 255, 105–112. [Google Scholar] [CrossRef]
- Cordero, A.; Torregrosa, J.R.; Vassileva, M.P. Three-step iterative methods with optimal eighth-order convergence. J. Comput. Appl. Math. 2011, 235, 3189–3194. [Google Scholar] [CrossRef]
- Cordero, A.; Hueso, J.L.; Martínez, E.; Torregrosa, J.R. New modifications of Potra-Pták’s method with optimal fourth and eighth order of convergence. J. Comput. Appl. Math. 2010, 234, 2969–2976. [Google Scholar] [CrossRef]
- Džuníc, J.; Petkovíc, M.S. A family of three point methods of Ostrowski’s type for solving nonlinear equations. J. Appl. Math. 2012, 2012, 425867. [Google Scholar] [CrossRef]
- Liu, L.; Wang, X. Eighth-order methods with high efficiency index for solving nonlinear equations. J. Comput. Appl. Math. 2010, 215, 3449–3454. [Google Scholar] [CrossRef]
- Sharma, J.R.; Sharma, R. A new family of modified Ostrowski’s methods with accelerated eighth order convergence. Numer. Algorithms 2010, 54, 445–458. [Google Scholar] [CrossRef]
- Soleymani, F.; Vanani, S.K.; Khan, M.; Sharifi, M. Some modifications of King’s family with optimal eighth-order of convergence. Math. Comput. Model. 2012, 55, 1373–1380. [Google Scholar] [CrossRef]
- Soleymani, F.; Sharifi, M.; Mousavi, B.S. An improvement of Ostrowski’s and King’s techniques with optimal convergence order eight. J. Optim. Theory Appl. 2012, 153, 225–236. [Google Scholar] [CrossRef]
- Thukral, R.; Petkovíc, M.S. A family of three point methods of optimal order for solving nonlinear equations. J. Comput. Appl. Math. 2010, 233, 2278–2284. [Google Scholar] [CrossRef]
- Wang, X.; Liu, L. Modified Ostrowski’s method with eighth-order convergence and high efficiency index. Appl. Math. Lett. 2010, 23, 549–554. [Google Scholar] [CrossRef]
- Salimi, M.; Lotfi, T.; Sharifi, S.; Siegmund, S. Optimal Newton-Secant like methods without memory for solving nonlinear equations with its dynamics. Int. J. Comput. Math. 2017, 94, 1759–1777. [Google Scholar] [CrossRef]
- Salimi, M.; Long, N.M.A.N.; Sharifi, S.; Pansera, B.A. A multi-point iterative method for solving nonlinear equations with optimal order of convergence. Jpn. J. Ind. Appl. Math. 2018, 2018 35, 497–509. [Google Scholar] [CrossRef]
- Sharifi, S.; Ferrara, M.; Salimi, M.; Siegmund, S. New modification of Maheshwari method with optimal eighth order of convergence for solving nonlinear equations. Open Math. 2016, 2016 14, 443–451. [Google Scholar]
- Lotfi, T.; Sharifi, S.; Salimi, M.; Siegmund, S. A new class of three point methods with optimal convergence order eight and its dynamics. Numer. Algorithms 2016, 68, 261–288. [Google Scholar] [CrossRef]
- Apostol, T.M. Mathematical Analysis; Addison-Wesley Publishing Company, Inc.: Boston, MA, USA, 1974. [Google Scholar]
- Behl, R.; Cordero, A.; Motsa, S.S.; Torregrosa, J.R. Construction of fourth-order optimal families of iterative methods and their dynamics. Appl. Math. Comput. 2015, 271, 89–101. [Google Scholar] [CrossRef][Green Version]
- King, R.F. A family of fourth order methods for nonlinear equations. SIAM J. Numer. Anal. 1973, 10, 876–879. [Google Scholar] [CrossRef]
| Cases | n | |||||||
|---|---|---|---|---|---|---|---|---|
| 0 | ||||||||
| 1 | 15.940 | |||||||
| 2 | 16.000 | |||||||
| 0 | ||||||||
| 1 | 14.928 | |||||||
| 2 | 16.000 | |||||||
| 0 | ||||||||
| 1 | 15.340 | |||||||
| 2 | 16.000 | |||||||
| 0 | ||||||||
| 1 | 17.180 | |||||||
| 2 | 16.000 | |||||||
| 0 | ||||||||
| 1 | 17.111 | |||||||
| 2 | 16.000 | |||||||
| 0 | ||||||||
| 1 | 16.364 | |||||||
| 2 | 16.000 | |||||||
| 0 | ||||||||
| 1 | 13.6218 | |||||||
| 2 | 16.000 | |||||||
| 0 | ||||||||
| 1 | 16.1492 | |||||||
| 2 | 16.000 |
| 3.8 | |||||||||
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Salimi, M.; Behl, R. Sixteenth-Order Optimal Iterative Scheme Based on Inverse Interpolatory Rational Function for Nonlinear Equations. Symmetry 2019, 11, 691. https://doi.org/10.3390/sym11050691
Salimi M, Behl R. Sixteenth-Order Optimal Iterative Scheme Based on Inverse Interpolatory Rational Function for Nonlinear Equations. Symmetry. 2019; 11(5):691. https://doi.org/10.3390/sym11050691
Chicago/Turabian StyleSalimi, Mehdi, and Ramandeep Behl. 2019. "Sixteenth-Order Optimal Iterative Scheme Based on Inverse Interpolatory Rational Function for Nonlinear Equations" Symmetry 11, no. 5: 691. https://doi.org/10.3390/sym11050691
APA StyleSalimi, M., & Behl, R. (2019). Sixteenth-Order Optimal Iterative Scheme Based on Inverse Interpolatory Rational Function for Nonlinear Equations. Symmetry, 11(5), 691. https://doi.org/10.3390/sym11050691

