Modified Optimal Class of Newton-Like Fourth-Order Methods for Multiple Roots
Abstract
1. Introduction
2. Construction of the Family
Some Particular Cases of the Suggested Class
3. Numerical Experiments
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ostrowski, A.M. Solution of Equations and Systems of Equations; Academic Press: New York, NY, USA, 1960. [Google Scholar]
- Traub, J.F. Iterative Methods for the Solution of Equations; Prentice-Hall: Englewood Cliffs, NJ, USA, 1964. [Google Scholar]
- Kanwar, V.; Bhatia, S.; Kansal, M. New optimal class of higher-order methods for multiple roots, permitting f′(xn)=0. Appl. Math. Comput. 2013, 222, 564–574. [Google Scholar] [CrossRef]
- Behl, R.; Cordero, A.; Motsa, S.S.; Torregrosa, J.R. On developing fourth-order optimal families of methods for multiple roots and their dynamics. Appl. Math. Comput. 2015, 265, 520–532. [Google Scholar] [CrossRef]
- Behl, R.; Cordero, A.; Motsa, S.S.; Torregrosa, J.R.; Kanwar, V. An optimal fourth-order family of methods for multiple roots and its dynamics. Numer. Algor. 2016, 71, 775–796. [Google Scholar] [CrossRef]
- Li, S.; Liao, X.; Cheng, L. A new fourth-order iterative method for finding multiple roots of nonlinear equations. Appl. Math. Comput. 2009, 215, 1288–1292. [Google Scholar]
- Neta, B.; Chun, C.; Scott, M. On the development of iterative methods for multiple roots. Appl. Math. Comput. 2013, 224, 358–361. [Google Scholar] [CrossRef]
- Sharma, J.R.; Sharma, R. Modified Jarratt method for computing multiple roots. Appl. Math. Comput. 2010, 217, 878–881. [Google Scholar] [CrossRef]
- Zhou, X.; Chen, X.; Song, Y. Constructing higher-order methods for obtaining the multiple roots of nonlinear equations. Comput. Appl. Math. 2011, 235, 4199–4206. [Google Scholar] [CrossRef]
- Kim, Y.I.; Geum, Y.H. A triparametric family of optimal fourth-order multiple-root finders and their Dynamics. Discret. Dyn. Nat. Soc. 2016, 2016, 8436759. [Google Scholar] [CrossRef]
- Li, S.; Cheng, L.; Neta, B. Some fourth-order nonlinear solvers with closed formulae for multiple roots. Comput. Math. Appl. 2010, 59, 126–135. [Google Scholar] [CrossRef]
- Neta, B. Extension of Murakami’s high-order non-linear solver to multiple roots. Int. J. Comput. Math. 2010, 87, 1023–1031. [Google Scholar] [CrossRef]
- Zhou, X.; Chen, X.; Song, Y. Families of third and fourth order methods for multiple roots of nonlinear equations. Appl. Math. Comput. 2013, 219, 6030–6038. [Google Scholar] [CrossRef]
- Lee, M.Y.; Kim, Y.I.; Magrenan, A.A. On the dynamics of tri-parametric family of optimal fourth-order multiple-zero finders with a weight function of the principal mth root of a function-function ratio. Appl. Math. Comput. 2017, 315, 564–590. [Google Scholar]
- Zafar, F.; Cordero, A.; Torregrosa, J.R. Stability analysis of a family of optimal fourth-order methods for multiple roots. Numer. Algor. 2018. [Google Scholar] [CrossRef]
- Shacham, M. Numerical solution of constrained nonlinear algebraic equations. Int. J. Numer. Method Eng. 1986, 23, 1455–1481. [Google Scholar] [CrossRef]
- Constantinides, A. , Mostoufi, N. Numerical Methods for Chemical Engineers with MATLAB Applications; Prentice Hall PTR: Upper Saddle River, NJ, USA, 1999. [Google Scholar]
- Douglas, J.M. Process Dynamics and Control; Prentice Hall: Englewood Cliffs, NJ, USA, 1972; Volume 2. [Google Scholar]
- Jain, D. Families of Newton-like method with fourth-order convergence. Int. J. Comput. Math. 2013, 90, 1072–1082. [Google Scholar] [CrossRef]
Methods | n | ||||
---|---|---|---|---|---|
0 | * | * | |||
1 | * | * | * | ||
2 | * | * | * | ||
3 | * | * | * | ||
0 | * | * | |||
1 | * | * | * | ||
2 | * | * | * | ||
3 | * | * | * | ||
0 | |||||
1 | |||||
2 | |||||
3 | |||||
0 | |||||
1 | |||||
2 | |||||
3 | |||||
0 | |||||
1 | |||||
2 | |||||
3 |
Methods | n | ||||
---|---|---|---|---|---|
0 | |||||
1 | |||||
2 | |||||
3 | |||||
0 | |||||
1 | |||||
2 | |||||
3 | |||||
0 | |||||
1 | |||||
2 | |||||
3 | |||||
0 | |||||
1 | |||||
2 | |||||
3 | |||||
0 | |||||
1 | |||||
2 | |||||
3 |
Methods | n | ||||
---|---|---|---|---|---|
0 | |||||
1 | |||||
2 | |||||
3 | |||||
0 | |||||
1 | |||||
2 | |||||
3 | |||||
0 | |||||
1 | |||||
2 | |||||
3 | |||||
0 | |||||
1 | |||||
2 | |||||
3 | |||||
0 | |||||
1 | |||||
2 | |||||
3 |
Methods | n | ||||
---|---|---|---|---|---|
0 | |||||
1 | |||||
2 | |||||
3 | |||||
0 | |||||
1 | |||||
2 | |||||
3 | |||||
0 | |||||
1 | |||||
2 | |||||
3 | |||||
0 | |||||
1 | |||||
2 | |||||
3 | |||||
0 | |||||
1 | |||||
2 | |||||
3 |
Methods | n | ||||
---|---|---|---|---|---|
0 | |||||
1 | |||||
2 | |||||
3 | |||||
0 | |||||
1 | |||||
2 | |||||
3 | |||||
0 | |||||
1 | |||||
2 | |||||
3 | |||||
0 | |||||
1 | |||||
2 | |||||
3 | |||||
0 | |||||
1 | |||||
2 | |||||
3 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kansal, M.; Behl, R.; Mahnashi, M.A.A.; Mallawi, F.O. Modified Optimal Class of Newton-Like Fourth-Order Methods for Multiple Roots. Symmetry 2019, 11, 526. https://doi.org/10.3390/sym11040526
Kansal M, Behl R, Mahnashi MAA, Mallawi FO. Modified Optimal Class of Newton-Like Fourth-Order Methods for Multiple Roots. Symmetry. 2019; 11(4):526. https://doi.org/10.3390/sym11040526
Chicago/Turabian StyleKansal, Munish, Ramandeep Behl, Mohammed Ali A. Mahnashi, and Fouad Othman Mallawi. 2019. "Modified Optimal Class of Newton-Like Fourth-Order Methods for Multiple Roots" Symmetry 11, no. 4: 526. https://doi.org/10.3390/sym11040526
APA StyleKansal, M., Behl, R., Mahnashi, M. A. A., & Mallawi, F. O. (2019). Modified Optimal Class of Newton-Like Fourth-Order Methods for Multiple Roots. Symmetry, 11(4), 526. https://doi.org/10.3390/sym11040526