Disturbance Decoupling Problem: Logic-Dynamic Approach-Based Solution
Abstract
:1. Introduction
2. Preliminaries
3. Logic-Dynamic Approach
4. Problem Solution
4.1. Disturbance Decoupling for the Linear Part of a System
4.2. Dynamic Part of the Compensator Design
4.3. Function Design
4.4. Discussion
5. Example
6. Conclusions
Funding
Conflicts of Interest
References
- Andiarti, R.; Moog, C.H. Output feedback disturbance decoupling in nonlinear systems. IEEE Trans. Autom. Control 1996, 41, 1683–1689. [Google Scholar]
- Battilotti, S. A sufficient condition for nonlinear disturbance decoupling with stability via measurement feedback. In Proceedings of the 36th Conference on Decision & Control, San Diego, CA, USA, 10–12 December 1997; pp. 3509–3514. [Google Scholar]
- Isidori, A.; Krener, A.J.; Gori-Giorgi, C.; Monaco, S. Nonlinear decoupling via feedback: A differential gemetric approach. IEEE Trans. Autom. Control 1981, 26, 331–345. [Google Scholar]
- Isidori, A. The geometric approach to nonlinear feedback control: A survey. In Lecture Notes in Computer and Information Science, No 4; Springer: Berlin, Germany, 1982; pp. 517–530. [Google Scholar]
- Xia, X.; Moog, C.H. Disturbance decoupling by measurement feedback for SISO nonlinear systems. IEEE Trans. Autom. Control 1999, 44, 1425–1429. [Google Scholar]
- Kaldmae, A.; Kotta, U.; Shumsky, A.; Zhirabok, A. Measurement feedback disturbance decoupling in discrete-time nonlinear systems. Automatica 2013, 49, 2887–2891. [Google Scholar]
- Kaldmae, A.; Kotta, U.; Jiang, B.; Shumsky, A.; Zhirabok, A. Faulty plant reconfiguration based on disturbance decoupling methods. Asian J. Control 2016, 8, 858–867. [Google Scholar]
- Kaldmae, A.; Kotta, U.; Shumsky, A.; Zhirabok, A. Disturbance decoupling in nonlinear hybrid systems. Nonlinear Anal. Hybrid Syst. 2018, 28, 42–53. [Google Scholar]
- Zhirabok, A.; Shumsky, A. Disturbance decoupling in finite automata. In Lecture Notes in Computer Science, No 10792. Language and Automata Theory and Applications; Springer: Berlin, Germany, 2018; pp. 118–129. [Google Scholar]
- Conte, G.; Moog, C.H.; Perdon, A.M. Algebraic Methods for Nonlinear Control Systems. Theory and Applications; Springer: Berlin, Germany, 2007. [Google Scholar]
- Shumsky, A.Y.; Zhirabok, A.N. Unified approach to the problem of full decoupling via output feedback. Eur. J. Control 2010, 16, 313–325. [Google Scholar]
- Willems, J.C. On interconnections, control and feedback. IEEE Trans. Autom. Control 1997, 42, 326–339. [Google Scholar]
- Zhirabok, A.; Shumsky, A. An approach to analysis of observability and controllability in nonlinear systems via linear methods. Int. J. Appl. Math. Comput. Sci. 2012, 22, 507–522. [Google Scholar]
- Zhirabok, A.; Shumsky, A.; Solyanik, S.; Suvorov, A. Fault detection in nonlinear systems via linear methods. Int. J. Appl. Math. Comput. Sci. 2017, 27, 261–272. [Google Scholar]
- Zhang, Q.; Zhou, J.; Wang, H.; Chai, T. Output feedback stabilization for a class of multi-variable bilinear stochastic systems with stochastic coupling attenuation. IEEE Trans. Autom. Control 2017, 62, 2936–2942. [Google Scholar]
© 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhirabok, A. Disturbance Decoupling Problem: Logic-Dynamic Approach-Based Solution. Symmetry 2019, 11, 555. https://doi.org/10.3390/sym11040555
Zhirabok A. Disturbance Decoupling Problem: Logic-Dynamic Approach-Based Solution. Symmetry. 2019; 11(4):555. https://doi.org/10.3390/sym11040555
Chicago/Turabian StyleZhirabok, Alexey. 2019. "Disturbance Decoupling Problem: Logic-Dynamic Approach-Based Solution" Symmetry 11, no. 4: 555. https://doi.org/10.3390/sym11040555