On Efficient Estimation of Process Variability
Abstract
:1. Introduction
2. Materials and Methods
3. Proposed Estimator
3.1. Special Cases
3.2. Efficiency Comparison of the Generalized Exponential Estimator
4. Results
4.1. Numerical Study
4.2. Simulation Results
5. Conclusions and Recommendations
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Isaki, C.T. Variance Estimation Using Auxiliary Information. J. Am. Stat. Assoc. 1983, 78, 117–123. [Google Scholar] [CrossRef]
- Das, A.K.; Tripathi, T. Use of Auxiliary Information in Estimating the Finite Population Variance. Sankhya 1978, 40, 139–148. [Google Scholar]
- Upadhyaya, L.; Singh, H. An Estimator for Population Variance That Utilizes the Kurtosis of an Auxiliary Variable in Sample Surveys. Vikram Math. J. 1999, 19, 14–17. [Google Scholar]
- Kadilar, C.; Cingi, H. Ratio Estimators for the Population Variance in Simple and Stratified Random Sampling. Appl. Math. Comput. 2006, 173, 1047–1059. [Google Scholar] [CrossRef]
- Upadhyaya, L.N.; Singh, H.P.; Chatterjee, S.; Yadav, R. A Generalized Family of Transformed Ratio-Product Estimators in Sample Surveys. Model Assist. Stati. Appl. 2011, 6, 137–150. [Google Scholar] [CrossRef]
- Yadav, S.K.; Kadilar, C. A Class of Ratio-Cum-Dual to Ratio Estimator of Population Variance. J. Reliab. Stat. Stud. 2013, 6, 29–34. [Google Scholar]
- Asghar, A.; Sanaullah, A.; Hanif, M. Generalized Exponential Type Estimator for Population Variance in Survey Sampling. Revista Colombiana de Estadística 2014, 37, 213–224. [Google Scholar] [CrossRef]
- Singh, R.; Chauhan, P.; Sawan, N.; Smarandache, F. Improved Exponential Estimator for Population Variance Using Two Auxiliary Variables. arXiv Preprint, 2009; arXiv:0902.0126. [Google Scholar]
- Yadav, R.; Upadhyaya, L.N.; Singh, H.P.; Chatterjee, S. A Generalized Family of Transformed Ratio-Product Estimators for Variance in Sample Surveys. Commun. Stat.-Theory Methods 2013, 42, 1839–1850. [Google Scholar] [CrossRef]
- Sharma, B.; Tailor, R. A New Ratio-Cum-Dual to Ratio Estimator of Finite Population Mean in Simple Random Sampling. Glob. J. Sci. Front. Res. 2010, 10, 27–31. [Google Scholar]
- Sanaullah, A.; Ali, H.A.; ul Amin, M.N.; Hanif, M. Generalized Exponential Chain Ratio Estimators under Stratified Two-Phase Random Sampling. Appl. Math. Comput. 2014, 226, 541–547. [Google Scholar] [CrossRef]
- Das, A.K. Contributions to the Theory of Sampling Strategies Based on Auxiliary Information. Unpublished. Ph.D. Thesis, B.C.K.V., West Bengal, India, 1980. [Google Scholar]
- Murthy, M. Sampling Theory and Methods; Calcutta Statistical Publishing Society: Kolkatta, India, 1967. [Google Scholar]
- Available online: https://www.statcrunch.com/app/index.php?dataid=285946 (accessed on 26 January 2019).
- Gujarati, D.N.; Porter, D.C. Basic Econometrics, 5th ed.; McGraw Hill: New York, NY, USA, 2011; p. 189. [Google Scholar]
- Cochran, W.G. Sampling Technique; John Wiley: New York, NY, USA, 1977. [Google Scholar]
- Singh, R.K.; Chaudhary, B.D. Biometrical Method in Quantitative Genetics Analysis; Kalyani Publishers: New Delhi, India, 1987. [Google Scholar]
- Mukhopadhyay, P. Theory and Methods of Survey Sampling; Prentice Hall: New Delhi, India, 1998. [Google Scholar]
Estimator | g | ||
---|---|---|---|
0 | a | g | |
1 | a | g | |
1 | 1 | g | |
1 | 2 | g |
Measure | Source | N | n | ||||
Population I | [12] | 142 | 20 | 4015.218 | 2900.387 | 2.112 | 2.197 |
Population II | [13] | 80 | 25 | 5182.638 | 283.875 | 0.352 | 0.943 |
Population III | [14] | 64 | 8 | 141.500 | 51.187 | 0.537 | 0.509 |
Population IV | [15] | 51 | 7 | 13.067 | 543.373 | 0.323 | 0.684 |
Population V | [16] | 58 | 12 | 85.948 | 93.000 | 1.121 | 1.127 |
Population VI | [16] | 80 | 23 | 90.813 | 104.575 | 0.392 | 0.379 |
Population VII | [17] | 53 | 10 | 917.019 | 1417.245 | 0.402 | 0.682 |
Population VIII | [17] | 66 | 14 | 974.424 | 1716.136 | 0.512 | 0.612 |
Population IX | [18] | 71 | 12 | 4137.803 | 241.944 | 0.306 | 0.557 |
Population X | [18] | 75 | 12 | 1.377 | 6.347 | 1.748 | 0.418 |
Measure | Source | ||||||
Population I | [12] | 0.995 | 40.854 | 48.157 | 40.218 | 43.762 | 5.979 |
Population II | [13] | 0.914 | 2.267 | 3.650 | 1.295 | 2.337 | 0.548 |
Population III | [14] | −0.818 | 2.378 | 1.658 | 0.006 | 1.438 | −0.146 |
Population IV | [15] | 0.446 | 3.653 | 15.231 | 7.636 | 4.472 | 0.942 |
Population V | [16] | 0.978 | 24.747 | 6.175 | 3.333 | 5.167 | 155.121 |
Population VI | [16] | 0.628 | 4.573 | 5.701 | 0.629 | 10.772 | 96.058 |
Population VII | [17] | 0.775 | 5.355 | 8.526 | 5.668 | 4.839 | 562.914 |
Population VIII | [17] | 0.776 | 9.128 | 19.038 | 11.960 | 11.210 | 1142.321 |
Population IX | [18] | −0.382 | 4.458 | 2.635 | 0.255 | 2.181 | 247.516 |
Population X | [18] | 0.222 | 31.544 | 2.019 | 0.004 | 4.271 | 4.027 |
Population Number | Estimator | |||||||
---|---|---|---|---|---|---|---|---|
1 | 100 | 33.731 | 22.284 | 135.988 | 81.601 | 36.427 | 83.205 | 21.703 |
2 | 100 | 98.106 | 46.764 | 158.333 | 56.739 | 96.203 | 56.552 | 41.038 |
3 | 100 | 84.202 | 80.172 | 99.312 | 110.281 | 95.337 | 82.673 | 68.061 |
4 | 100 | 174.642 | 103.215 | 128.675 | 86.316 | 78.946 | 73.917 | 59.606 |
5 | 100 | 31.169 | 81.740 | 77.460 | 81.330 | 82.980 | 74.525 | 10.052 |
6 | 100 | 37.034 | 63.532 | 85.541 | 83.752 | 57.028 | 77.202 | 11.427 |
7 | 100 | 96.512 | 55.054 | 89.234 | 82.016 | 86.182 | 72.476 | 48.790 |
8 | 100 | 70.693 | 29.870 | 87.055 | 58.140 | 84.745 | 64.014 | 25.314 |
9 | 100 | 78.955 | 77.656 | 74.898 | 72.663 | 75.669 | 82.562 | 65.989 |
10 | 100 | 81.918 | 90.125 | 105.364 | 92.336 | 100.016 | 84.913 | 54.820 |
Coefficient | Estimator | ||||||
---|---|---|---|---|---|---|---|
88.449 (0.003) | 82.312 (0.000) | 94.493 (0.000) | 86.106 (0.000) | 90.983 (0.000) | 76.948 (0.000) | 53.468 (0.000) | |
−11.353 (0.700) | −9.407 (0.474) | 7.131 (0.701) | −16.670 (0.097) | 0.795 (0.930) | −10.860 (0.058) | −26.908 (0.030) | |
−0.408 (0.748) | −0.798 (0.181) | 0.573 (0.482) | 0.175 (0.656) | −1.063 (0.026) | 0.282 (0.217) | −0.052 (0.907) | |
F-ratio | 0.251 (0.785) | 2.420 (0.159) | 0.624 (0.482) | 1.946 (0.213) | 4.898 (0.047) | 2.618 (0.142) | 4.849 (0.048) |
Estimator | ||||||||
---|---|---|---|---|---|---|---|---|
−0.9 | 100 | 189.134 | 119.577 | 100.037 | 100.031 | 109.366 | 91.881 | 84.899 |
−0.7 | 100 | 193.632 | 121.793 | 100.038 | 100.518 | 109.607 | 88.730 | 82.266 |
−0.5 | 100 | 196.582 | 123.296 | 100.042 | 100.857 | 109.711 | 87.862 | 86.497 |
−0.3 | 100 | 198.862 | 124.449 | 100.047 | 101.115 | 109.763 | 91.445 | 85.654 |
−0.1 | 100 | 199.721 | 124.892 | 100.040 | 101.216 | 109.776 | 92.079 | 87.677 |
0.1 | 100 | 200.035 | 124.974 | 100.038 | 101.221 | 109.772 | 87.667 | 84.565 |
0.3 | 100 | 198.773 | 124.377 | 100.040 | 101.094 | 109.762 | 90.272 | 88.006 |
0.5 | 100 | 196.642 | 123.334 | 100.043 | 100.866 | 109.715 | 88.728 | 83.709 |
0.7 | 100 | 192.997 | 121.545 | 100.045 | 100.475 | 109.584 | 92.261 | 82.935 |
0.9 | 100 | 189.171 | 119.600 | 100.043 | 100.037 | 109.366 | 89.811 | 86.255 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Akhlaq, T.; Ismail, M.; Shahbaz, M.Q. On Efficient Estimation of Process Variability. Symmetry 2019, 11, 554. https://doi.org/10.3390/sym11040554
Akhlaq T, Ismail M, Shahbaz MQ. On Efficient Estimation of Process Variability. Symmetry. 2019; 11(4):554. https://doi.org/10.3390/sym11040554
Chicago/Turabian StyleAkhlaq, Tanveer, Muhammad Ismail, and Muhammad Qaiser Shahbaz. 2019. "On Efficient Estimation of Process Variability" Symmetry 11, no. 4: 554. https://doi.org/10.3390/sym11040554