Hyers-Ulam Stability for Linear Differences with Time Dependent and Periodic Coefficients
Abstract
1. Introduction
2. Definitions and Notations
3. Background and the Main Result
4. Proofs
5. Examples
Author Contributions
Funding
Conflicts of Interest
References
- Buşe, C.; O’Regan, D.; Saierli, O.; Tabassum, A. Hyers-Ulam stability and discrete dichotomy for difference periodic systems. Bull. Sci. Math. 2016, 40, 908–934. [Google Scholar]
- Buşe, C.; Lupulescu, V.; O’Regan, D. Hyers–Ulam stability for equations with differences and differential equations with time-dependent and periodic coefficients. Proc. R. Soc. Edinb. Sect. A Math. 2019. [Google Scholar] [CrossRef]
- Buşe, C.; O’Regan, D.; Saierli, O. Hyers–Ulam stability for linear differences with time dependent and periodic coefficients: The case when the monodromy matrix has simple eigenvalues. Symmetry 2019, 11, 339. [Google Scholar] [CrossRef]
- Barbu, D.; Buşe, C.; Tabassum, A. Hyers-Ulam stability and discrete dichotomy. J. Math. Anal. Appl. 2015, 423, 1738–1752. [Google Scholar] [CrossRef]
- Barbu, D.; Buşe, C.; Tabassum, A. Hyers-Ulam stability and exponential dichotomy of linear differential periodic systems are equivalent. Electron. J. Qual. Theory Differ. Equ. 2015, 2015, 1–12. [Google Scholar]
- Baias, A.R.; Popa, D. On Ulam Stability of a Linear Difference Equation in Banach Spaces. Bull. Malays. Math. Sci. Soc. Ser. 2019. [Google Scholar] [CrossRef]
- Brzdȩk, J.; Jung, S.-M. A note on stability of an operator linear equation of the second order. Abstract Appl. Anal. 2011, 2011. [Google Scholar] [CrossRef]
- Popa, D. Hyers-Ulam stability of the linear recurrence with constant coefficients. Adv. Differ. Equa. 2005, 2005, 101–107. [Google Scholar] [CrossRef]
- Xu, B.; Brzdȩk, J.; Zhang, W. Fixed point results and the Hyers-Ulam stability of linear equations of higher orders. Pac. J. Math. 2015, 273, 483–498. [Google Scholar] [CrossRef]
- Barreira, L.; Valls, C. Tempered exponential behavior for a dynamics in upper triangular form. Electron. J. Qual. Theory Differ. Equ. 2018, 77, 1–22. [Google Scholar] [CrossRef]
- Wang, J.R.; Feckan, M.; Tian, Y. Stability Analysis for a General Class of Non-instantaneous Impulsive Differential Equations. Mediterr. J. Math. 2017, 14. [Google Scholar] [CrossRef]
- Khan, H.; Li, Y.; Chen, W.; Baleanu, D.; Kan, A. Existence theorems and Hyers-Ulam stability for a coupled system of fractional differential equations with p-Laplacian operator. Bound. Value Prob. 2017, 2017. [Google Scholar] [CrossRef]
- Scapellato, A. Homogeneous Herz spaces with variable exponents and regularity results. Electron. J. Qualitative Theor. Differ. Equa. 2018, 82, 1–11. [Google Scholar] [CrossRef]
- Buşe, C.; O’Regan, D.; Saierli, O. A surjectivity problem for 3 by 3 matrices. Oper. Matrices 2019, 13, 111–119. [Google Scholar] [CrossRef]
- Ma, W.-X. A Darboux transformation for the Volterra lattice equation. Anal. Math. Phys. 2019, 9. [Google Scholar] [CrossRef]
- Dunford, N.; Schwartz, J.T. Linear Operators, Part I: General Theory; Wiley: New York, NY, USA, 1958. [Google Scholar]
- Rudin, W. Real and Complex Analysis, 3rd ed.; McGraw-Hill: New York, NY, USA, 1986. [Google Scholar]
- Buşe, C.; Zada, A. Dichotomy and Boundedness of Solutions for Some Discrete Cauchy Problems. In Topics in Operator Theory. Operator Theory: Advances and Applications; Ball, J.A., Bolotnikov, V., Rodman, L., Spitkovsky, I.M., Helton, J.W., Eds.; Birkhäuser: Basel, Switzerland, 2010. [Google Scholar]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Buşe, C.; O’Regan, D.; Saierli, O. Hyers-Ulam Stability for Linear Differences with Time Dependent and Periodic Coefficients. Symmetry 2019, 11, 512. https://doi.org/10.3390/sym11040512
Buşe C, O’Regan D, Saierli O. Hyers-Ulam Stability for Linear Differences with Time Dependent and Periodic Coefficients. Symmetry. 2019; 11(4):512. https://doi.org/10.3390/sym11040512
Chicago/Turabian StyleBuşe, Constantin, Donal O’Regan, and Olivia Saierli. 2019. "Hyers-Ulam Stability for Linear Differences with Time Dependent and Periodic Coefficients" Symmetry 11, no. 4: 512. https://doi.org/10.3390/sym11040512
APA StyleBuşe, C., O’Regan, D., & Saierli, O. (2019). Hyers-Ulam Stability for Linear Differences with Time Dependent and Periodic Coefficients. Symmetry, 11(4), 512. https://doi.org/10.3390/sym11040512