# Cosmological Probes of Supersymmetric Field Theory Models at Superhigh Energy Scales

^{1}

^{2}

^{3}

^{4}

^{5}

^{*}

^{†}

## Abstract

**:**

## 1. Introduction

## 2. Cosmological Traces of Starobinsky Supergravity Models

#### 2.1. Starobinsky Inflation

#### 2.2. Supersymmetry and Supergravity

- it has SUSY unifying bosons and fermions,
- it automatically includes General Relativity (GR),
- it is the conservative extension of GR and field theory (without violating their basic principles), which restricts a number of independent coupling constants,
- SUSY Grand Unified Theories (GUTs) gives rise to the perfect unification of electro-weak and strong interactions,
- the spectrum of matter-coupled supergravities with spontaneously broken SUSY has the natural candidate for dark matter particle, given by the Lightest SUSY Particle (LSP),
- SUSY can be used to stabilize the fundamental scales, towards solving the hierarchy problem,
- SUSY results in cancellation of quadratic UV-divergences in quantum loops,
- some supergravity theories can be considered as the low-energy effective actions of superstring theories, i.e., in quantum gravity.

#### 2.3. Starobinsky Inflation in Supergravity

#### 2.4. Cosmological Traces of Inflation and Reheating with SUSY

## 3. Primordial Black Holes from Superhigh Energy Physics

#### 3.1. PBHs from Superheavy Metastable Particles

#### 3.2. PBHs from Phase Transitions during Inflation

#### 3.3. PBHs from Bubble Collisions in First-Order Phase Transitions

#### 3.4. Massive Primordial Black Holes from the Succession of U(1) Phase Transitions

## 4. Observational Probes for PBHs

#### 4.1. Gravitino Production by PBH Evaporation

#### 4.2. PBH Dark Matter

## 5. Anti-Matter Stars in Our Galaxy?

## 6. Supersymmetry in the Context of Cosmoparticle Physics

## Author Contributions

## Funding

## Acknowledgments

## Conflicts of Interest

## References

- Sakharov, A.D. Cosmoparticle physics—A multidisciplinary science. Vestn. AN SSSR
**1989**, 4, 39–40. [Google Scholar] - Khlopov, M.Y. Fundamental cross-disciplinary studies of microworld and universe. Vestn. Rus. Acad. Sci.
**2001**, 71, 1133–1137. [Google Scholar] - Khlopov, M.Y. Cosmoparticle Physics; World Scientific: Singapore, 1999. [Google Scholar]
- Khlopov, M.Y. Beyond the standard model in particle physics and cosmology: Convergence or divergence? In Neutrinos and Explosive Events in the Universe; Springer: Berlin, Germany, 2005; pp. 73–82. [Google Scholar]
- Khlopov, M.Y. Cosmoparticle physics: Cross-disciplinary study of physics beyond the standard model. Bled Work. Phys.
**2006**, 7, 51–62. [Google Scholar] - Khlopov, M.Y. Fundamentals of Cosmoparticle Physics; CISP-Springer: Cambridge, UK, 2012. [Google Scholar]
- Khlopov, M.Y. Fundamental particle structure in the cosmological dark matter. Int. J. Mod. Phys. A
**2013**, 28, 1330042. [Google Scholar] [CrossRef] - Khlopov, M.Y. Primordial black holes. Res. Astron. Astrophys.
**2010**, 10, 495–528. [Google Scholar] [CrossRef] - Khlopov, M.Y. Cosmological probes for supersymmetry. Symmetry
**2015**, 7, 815–842. [Google Scholar] [CrossRef] - Bertone, G. Particle Dark Matter: Observations, Models and Searches; Cambridge University Press: Cambridge, UK, 2010. [Google Scholar]
- Frenk, C.S.; White, S.D.M. Dark matter and cosmic structure. Ann. Phys.
**2012**, 524, 507–534. [Google Scholar] [CrossRef] [Green Version] - Gelmini, G.B. Search for dark matter. Int. J. Mod. Phys. A
**2008**, 23, 4273. [Google Scholar] [CrossRef] - Aprile, E.; Profumo, S. Focus on dark matter and particle physics. New J. Phys.
**2009**, 11, 105002. [Google Scholar] [CrossRef] - Feng, J.L. Dark matter candidates from particle physics and methods of detection. Ann. Rev. Astron. Astrophys.
**2010**, 48, 495–545. [Google Scholar] [CrossRef] - Addazi, A.; Marciano, A.; Ketov, S.V.; Khlopov, M.Y. Physics of superheavy dark matter in supergravity. Int. J. Mod. Phys. D
**2018**, 27, 1841011. [Google Scholar] [CrossRef] - Ketov, S.V.; Khlopov, M.Y. Extending Starobinsky inflationary model in gravity and supergravity. Bled Work. Phys.
**2018**, 19, 148–163. [Google Scholar] - Starobinsky, A.A. A new type of isotropic cosmological models without singularity. Phys. Lett. B
**1980**, 91, 99–102. [Google Scholar] [CrossRef] - Ketov, S.V.; Watanabe, N. Dark energy in modified supergravity. Mod. Phys. Lett.
**2012**, 27, 1250225. [Google Scholar] [CrossRef] - Akrami, Y.; Arroja, F.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Ballardini, M.; Banday, A.J.; Barreiro, R.B.; Bartolo, N.; Basak, S.; et al. Planck 2018 Results. X. Constraints on inflation. arXiv, 2018; arXiv:1807.06211. [Google Scholar]
- Freese, K.; Frieman, J.A.; Olinto, A.V. Natural inflation with pseudo Nambu-Goldstone bosons. Phys. Rev. Lett.
**1990**, 65, 3233–3236. [Google Scholar] [CrossRef] - Yamaguchi, M. Supergravity based inflation models: A review. Class. Quantum Gravity
**2011**, 28, 103001. [Google Scholar] [CrossRef] - Ketov, S.V.; Terada, T. Inflation in supergravity with a single chiral superfield. Phys. Lett. B
**2014**, 736, 272–277. [Google Scholar] [CrossRef] [Green Version] - Ketov, S.V.; Terada, T. Generic scalar potentials for inflation in supergravity with a single chiral superfield. J. High Energy Phys.
**2014**, 1412, 062. [Google Scholar] [CrossRef] - Ketov, S.V.; Terada, T. Single-superfield helical-phase inflation. Phys. Lett. B
**2016**, 752, 108–112. [Google Scholar] [CrossRef] [Green Version] - Ketov, S.V.; Terada, T. On SUSY restoration in singe-superfield inflationary models in supergravity. Eur. Phys. Lett. C
**2016**, 76, 438. [Google Scholar] [CrossRef] - Gates, S.J., Jr.; Ketov, S.V. Superstring-inspired supergravity as the universal source of inflation and quintessence. Phys. Lett. B
**2009**, 674, 59–63. [Google Scholar] [CrossRef] [Green Version] - Ketov, S.V. Scalar potential in F(R) supergravity. Class. Quantum Gravity
**2009**, 26, 135006. [Google Scholar] [CrossRef] - Ketov, S.V. F(R) supergravity. AIP Cong. Proc.
**2010**, 1241, 613–619. [Google Scholar] [CrossRef] - Ketov, S.V. Chaotic inflation in F(R) supergravity. Phys. Lett. B
**2010**, 692, 272–276. [Google Scholar] [CrossRef] - Ketov, S.V.; Starobinsky, A.A. Embedding (R + R
^{2}) inflation into supergravity. Phys. Rev. D**2011**, 83, 063512. [Google Scholar] [CrossRef] - Ketov, S.V.; Watanabe, N. Cosmological properties of a generic ${\mathcal{R}}^{2}$ supergravity. J. Cosmol. Astropart. Phys.
**2011**, 1103, 011. [Google Scholar] [CrossRef] - Ketov, S.V.; Watanabe, N. Cosmological constant in F(R) supergravity. Phys. Lett. B
**2011**, 705, 410–413. [Google Scholar] [CrossRef] - Ketov, S.V.; Tsujikawa, S. Consistency of inflation and preheating in F(R) supergravity. Phys. Rev. D
**2012**, 86, 023529. [Google Scholar] [CrossRef] - Ketov, S.V. Supergravity and early Universe: The meeting point of cosmology and high-energy physics. Int. J. Mod. Phys. A
**2013**, 28, 1330021. [Google Scholar] [CrossRef] - Ketov, S.V.; Terada, T. Old-minimal supergravity models of inflation. J. High Energy Phys.
**2013**, 1312, 040. [Google Scholar] [CrossRef] - Addazi, A.; Ketov, S.V. Energy conditions in Starobinsky supergravity. J. Cosmol. Astropart. Phys.
**2017**, 1703, 061. [Google Scholar] [CrossRef] - Farakos, F.; Kehagias, A.; Riotto, A. On the Starobinsky model of inflation from supergravity. Nucl. Phys. B
**2013**, 876, 187–200. [Google Scholar] [CrossRef] [Green Version] - Ferrara, S.; Kallosh, R.; Linde, A.; Porrati, M. Minimal supergravity models of inflation. Phys. Rev. D
**2013**, 1703, 085038. [Google Scholar] [CrossRef] - Aldabergenov, Y.; Ketov, S.V. SUSY breaking after inflation in supergravity with inflaton in a massive vector supermultiplet. Phys. Lett. B
**2016**, 761, 115–118. [Google Scholar] [CrossRef] [Green Version] - Aldabergenov, Y.; Ketov, S.V. Higgs mechanism and cosmological constant in N = 1 supergravity with inflaton in a vector multiplet. Eur. Phys. Lett. C
**2017**, 77, 233. [Google Scholar] [CrossRef] - Aldabergenov, Y.; Ketov, S.V. Removing instability of inflation in Polonyi-Starobinsky supergravity by adding FI term. Mod. Phys. Lett. A
**2018**, 91, 1850032. [Google Scholar] [CrossRef] - Aldabergenov, Y.; Ketov, S.V.; Knoops, R. General couplings of a vector multiplet in N = 1 supergravity with new FI terms. Phys. Lett. B
**2018**, 785, 284–287. [Google Scholar] [CrossRef] - Addazi, A.; Ketov, S.V.; Khlopov, M.Y. Gravitino and Polonyi production insupergravity. Eur. Phys. J. C
**2018**, 78, 642. [Google Scholar] [CrossRef] - Giudice, G.; Strumia, A. Probing high-scale and split supersymmetry with higgs mass measurements. Nucl. Phys. B
**2012**, 858, 63–83. [Google Scholar] [CrossRef] - Khlopov, M.Y.; Chechetkin, V.M. Antiprotons in the universe as a cosmological test of grand unification. Sov. J. Part. Nucl.
**1987**, 18, 267–288. [Google Scholar] - Polnarev, A.G.; Khlopov, M.Y. Cosmology, primordial black holes, and supermassive particles. Sov. Phys. Uspekhi
**1985**, 28, 213–232. [Google Scholar] [CrossRef] - Hawking, S.W.; Moss, I.G.; Stewart, J.M. Bubble collisions in the very early universe. Phys. Rev. D
**1982**, 26, 2681–2693. [Google Scholar] [CrossRef] - Konoplich, R.V.; Rubin, S.G.; Sakharov, A.S.; Khlopov, M.Y. Formation of black holes in the first order phase transitions as cosmological test of mechanisms of symmetry breaking. Phys. Atom. Nucl.
**1999**, 62, 1593–1600. [Google Scholar] - Khlopov, M.Y.; Rubin, S.G. Cosmological Pattern of Microphysics in Inflationary Universe; Kluwer: Dordrecht, The Netherlands, 2004. [Google Scholar]
- Zeldovich, Y.B.; Novikov, I.D. The hypothesis of cores retarded during expansion and the hot cosmological model. Sov. Astron.
**1967**, 10, 602–609. [Google Scholar] - Belotsky, K.M.; Dmitriev, A.E.; Esipova, E.A.; Gani, V.A.; Grobov, A.V.; Khlopov, M.Y.; Kirillov, A.A.; Rubin, S.G.; Svadkovsky, I.V. Signatures of primordial black hole dark matter. Mod. Phys. Lett. A
**2014**, 29, 1440005. [Google Scholar] [CrossRef] [Green Version] - Hawking, S.W. Particle creation by black holes. Commun. Math. Phys.
**1975**, 43, 199–220. [Google Scholar] [CrossRef] - Carr, B.J. The primordial black hole mass spectrum. Astroph. J.
**1975**, 201, 1–19. [Google Scholar] [CrossRef] - Khlopov, M.Y.; Polnarev, A.G. Primordial black holes as a cosmological test of grand unification. Phys. Lett B
**1980**, 97, 383–387. [Google Scholar] [CrossRef] - Kalashnikov, O.K.; Khlopov, M.Y. On the possibility of checking the cosmology of asymptotically free SU(5) theory. Phys. Lett. B
**1983**, 127, 407–422. [Google Scholar] [CrossRef] - Kadnikov, A.F.; Maslyankin, V.I.; Khlopov, M.Y. Modelling of evolution of quasi-stellar systems, formed by particles and antiparticles in early Universe. Astrophysics
**1990**, 31, 523–531. [Google Scholar] [CrossRef] - Khlopov, M.Y.; Malomed, B.A.; Zel’dovich, Y.B. Gravitational instability of scalar fields and formation of primordial black holes. Mon. Not. R. Astron. Soc.
**1985**, 215, 575–589. [Google Scholar] [CrossRef] [Green Version] - Kofman, L.A.; Linde, A.D. Generation of density perturbations in the inflationary cosmology. Nucl. Phys. B
**1987**, 282, 555–626. [Google Scholar] [CrossRef] - Sakharov, A.S.; Khlopov, M.Y. Cosmological signatures of family symmetry breaking in multicomponent inflation models. Phys. Atom. Nucl.
**1993**, 56, 412–417. [Google Scholar] - Dymnikova, I.; Khlopov, M.Y.; Koziel, L.; Rubin, S.G. Quasilumps from first-order phase transitions. Gravit. Cosmol.
**2000**, 6, 311–318. [Google Scholar] - Rubin, S.G.; Sakharov, A.S.; Khlopov, M.Y. Formation of primordial galactic nuclei at phase transitions in the early universe. JETP
**2001**, 92, 921–929. [Google Scholar] [CrossRef] - Rubin, S.G.; Khlopov, M.Y.; Sakharov, A.S. Primordial nonlinear structures and massive black holes from early universe. Gravit. Cosmol. Suppl.
**2000**, 6, 51–58. [Google Scholar] - Khlopov, M.Y.; Rubin, S.G.; Sakharov, A.S. Primordial structure of massive black hole clusters. Astropart. Phys.
**2005**, 23, 265–277. [Google Scholar] [CrossRef] [Green Version] - Belotsky, K.M.; Dokuchaev, V.I.; Eroshenko, Y.N.; Esipova, E.A.; Khlopov, M.Y.; Khromykh, L.A.; Kirillov, A.A.; Nikulin, V.V.; Rubin, S.G.; Svadkovsky, I.V. Clusters of primordial black holes. Eur. Phys. J. C
**2019**, 79, 246. [Google Scholar] [CrossRef] - Dokuchaev, V.; Eroshenko, Y.; Rubin, S. Quasars formation around clusters of primordial black holes. Grav. Cosmol.
**2005**, 11, 99–104. [Google Scholar] - Vilenkin, A.; Shellard, E.P.S. CosmicStrings and Other Topological Defects; Cambridge University Press: Cambridge, UK, 1994. [Google Scholar]
- Novikov, I.D.; Polnarev, A.G.; Starobinski, A.A.; Zeldovich, Y.B. Primordial black holes. Astron. Astrophys.
**1979**, 80, 104–109. [Google Scholar] - Polnarev, A.G.; Khlopov, M.Y. Dustlike stages in the early universe and constraints on the primordial black-hole spectrum. Sov. Astron.
**1982**, 26, 391–395. [Google Scholar] - Chechetkin, V.M.; Khlopov, M.Y.; Sapozhnikov, M.G. Anti-proton interactions with light elements as a test of gut cosmology. Riv. Nuovo Cim.
**1982**, 5, 1–79. [Google Scholar] [CrossRef] - Lemoine, M. Moduli constraints on primordial black holes. Phys. Lett. B
**2000**, 481, 333–338. [Google Scholar] [CrossRef] [Green Version] - Khlopov, M.Y.; Barrau, A.; Grain, J. Gravitino production by primordial black hole evaporation and constraints on the inhomogeneity of the early universe. Class. Quantum Gravity
**2006**, 23, 1875–1882. [Google Scholar] [CrossRef] [Green Version] - Carr, B.; Kuehnel, F.; Sandstad, M. Primordial black holes as dark matter. Phys. Rev. D
**2016**, 94, 083504. [Google Scholar] [CrossRef] [Green Version] - Ali-Haimoud, Y.; Kamionkowski, M. Cosmic microwave background limits on accreting primordial black holes. Phys. Rev. D
**2017**, 95, 043534. [Google Scholar] [CrossRef] [Green Version] - The LIGO Scientific Collaboration; The Virgo Collaboration; Abbott, B.P. GWTC-1: A gravitational-wave transient catalog of compact binary mergers observed by LIGO and Virgo during the first and second observing runs. arXiv, 2018; arXiv:1811.12907. [Google Scholar]
- Bringmann, T.; Depta, P.F.; Domcke, V.; Schmidt-Hoberg, K. Strong constraints on clustered primordial black holes as dark matter. arXiv, 2018; arXiv:1808.05910. [Google Scholar]
- Chechetkin, V.M.; Khlopov, M.Y.; Sapozhnikov, M.G.; Zeldovich, Y.B. Astrophysical aspects of antiproton interaction with He (antimatter in the universe). Phys. Lett. B
**1982**, 118, 329–332. [Google Scholar] [CrossRef] - Dolgov, A.D.; Freese, K.; Rangarajan, R.; Srednicki, M. Baryogenesis during reheating in natural inflation and comments on spontaneous baryogenesis. Phys. Rev. D
**1997**, 56, 6155–6165. [Google Scholar] [CrossRef] [Green Version] - Dolgov, A.D. Matter and antimatter in the universe. Nucl. Phys. Proc. Suppl.
**2002**, 113, 40–49. [Google Scholar] [CrossRef] - Khlopov, M.Y.; Rubin, S.G.; Sakharov, A.S. Possible origin of antimatter regions in the baryon dominated universe. Phys. Rev. D
**2000**, 62, 083505. [Google Scholar] [CrossRef] - Khlopov, M.Y. An antimatter globular cluster in our galaxy: A probe for the origin of matter. Gravit. Cosmol.
**1998**, 4, 69–72. [Google Scholar] - Golubkov, Y.A.; Khlopov, M.Y. Anti-protons annihilation in the galaxy as a source of diffuse gamma background. Phys. Atom. Nucl.
**2001**, 64, 1821–1829. [Google Scholar] [CrossRef] - Fargion, D.; Khlopov, M.Y. Antimatter bounds by anti-asteroids annihilations on planets and sun. Astropart. Phys.
**2003**, 19, 441–446. [Google Scholar] [CrossRef] - Belotsky, K.M.; Golubkov, Y.A.; Khlopov, M.Y.; Konoplich, R.V.; Sakharov, A.S. Anti-helium flux as a signature for antimatter globular clusters in our galaxy. Phys. Atom. Nucl.
**2000**, 63, 233–239. [Google Scholar] [CrossRef] - Ting, S. The First Five Years of the Alpha Magnetic Spectrometer on the ISS. Available online: http://www.ams02.org/wp-content/uploads/2016/12/Final.pdf (accessed on 15 January 2019).
- Choutko, V.A. AMS heavy antimatter. Presented at AMS Days at la Palma, Canary Islands, Spain, 9–13 April 2018. [Google Scholar]
- Poulin, V.; Salati, P.; Cholis, I.; Kamionkowski, M.; Silk, J. Where do the AMS-02 anti-helium events come from? arXiv, 2019; arXiv:1808.08961. [Google Scholar]
- Blinnikov, S.I.; Dolgov, A.D.; Postnov, K.A. Antimatter and antistars in the universe and in the galaxy. Phys. Rev. D
**2015**, 92, 023516. [Google Scholar] [CrossRef] - Stecker, F.W.; Puget, J.-L. Galaxy formation from annihilation-generated turbulence in the baryon symmetric big bang cosmology. Astrophys. J.
**1972**, 178, 57–72. [Google Scholar] - Steigman, G.A. Observational tests of antimatter cosmologies. Annu. Rev. Astron. Astrophys.
**1976**, 14, 339–372. [Google Scholar] [CrossRef] - Cohen, A.G.; De Rujula, A.; Glashow, S.L. A matter—Antimatter universe? Astrophys. J.
**1998**, 495, 539–549. [Google Scholar] [CrossRef] - Kinney, W.H.; Kolb, E.W.; Turner, M.S. Ribbons on the CBR sky: A powerful test of a baryon symmetric universe. Phys. Rev. Lett.
**1997**, 79, 2620–2623. [Google Scholar] [CrossRef] - Khlopov, M.Y.; Konoplich, R.V.; Mignani, R.; Rubin, S.G.; Sakharov, A. Evolution and observational signature of diffused antiworld. Astropart. Phys.
**2000**, 12, 367–372. [Google Scholar] [CrossRef] [Green Version]

**Figure 1.**The constraints [6] on the possible effects of particles with relative concentration $\nu $ and mass m at the cosmological time $\tau $.

**Figure 3.**The expected flux of antiHelium-3 and antiHelium-4 [49] from antimatter globular cluster in our Galaxy.

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Ketov, S.V.; Khlopov, M.Y.
Cosmological Probes of Supersymmetric Field Theory Models at Superhigh Energy Scales. *Symmetry* **2019**, *11*, 511.
https://doi.org/10.3390/sym11040511

**AMA Style**

Ketov SV, Khlopov MY.
Cosmological Probes of Supersymmetric Field Theory Models at Superhigh Energy Scales. *Symmetry*. 2019; 11(4):511.
https://doi.org/10.3390/sym11040511

**Chicago/Turabian Style**

Ketov, Sergei V., and Maxim Yu. Khlopov.
2019. "Cosmological Probes of Supersymmetric Field Theory Models at Superhigh Energy Scales" *Symmetry* 11, no. 4: 511.
https://doi.org/10.3390/sym11040511