k-Hypergeometric Series Solutions to One Type of Non-Homogeneous k-Hypergeometric Equations
Abstract
:1. Introduction
2. Preliminaries
- (i)
- (ii)
- (iii)
- (iv)
3. The Solutions of Non-Homogeneous k-Hypergeometric Equations
4. Examples
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Euler, L. Institutionum Calculi Integralis; Impensis Academiae Imperialis Scientiarum: Petropolis, Brazil, 1769. [Google Scholar]
- Coddington, E.A.; Levinson, N. Theory of Ordinary Differential Equations; McGraw–Hill: New York, NY, USA, 1955. [Google Scholar]
- Teschl, G. Ordinary Differential Equations and Dynamical Systems; American Mathematical Society: Providence, RI, USA, 2012. [Google Scholar]
- Kurilin, B.I. Solution of the general Riccati equation with the aid of continued fractions. Radiophys. Quantum Electron. 1968, 11, 640–641. [Google Scholar] [CrossRef]
- Ku, Y.H. Solution of the riccati equation by continued fractions. J. Frankl. Inst. 1972, 293, 59–65. [Google Scholar] [CrossRef]
- Arnold, C. Formal continued fractions solutions of the generalized second order Riccati equations, applications. Numer. Algorithms 1997, 15, 111–134. [Google Scholar] [CrossRef]
- Elizalde, E.; Odintsov, S.D.; Romeo, A.; Bytsenko, A.; Zerbini, S. Zeta Regularization Techniques with Applications; World Scientific Publishing Company: Singapore, 1994. [Google Scholar]
- Elizalde, E. Analysis of an inhomogeneous generalized Epstein-Hurwitz zeta function with physical applications. J. Math. Phys. 1994, 35, 6100–6122. [Google Scholar] [CrossRef]
- Bordag, M.; Elizalde, E.; Kirsten, K. Heat kernel coefficients of the Laplace operator on the D-dimensional ball. J. Math. Phys. 1996, 37, 895–916. [Google Scholar] [CrossRef]
- Elizalde, E. Ten Physical Applications of Spectral Zeta Functions; Lecture Notes in Physics Book Series; Springer: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- Wallis, J. Arithmetica Infinitorum (Latin); Originally published (1656); English translation: The Arithmetic of Infinitesimals by J. A. Stedall; Springer: New York, NY, USA, 2004. [Google Scholar] [CrossRef]
- Gauss, C.F. Disquisitiones generales circa seriem infinitam . pars prior. Comm. Soc. Regiae Sci. Gottingensis Rec. 1812, 2, 123–162. [Google Scholar]
- Kummer, E.E. Über die hypergeometrische Reihe. J. Die Reine Angew. Math. 1836, 15, 39–83. [Google Scholar] [CrossRef]
- Riemann, B. Beiträge zur Theorie der durch die Gauss’sche Reihe F(α, β, γ, x) darstellbaren Functionen. Aus dem Sieben. Band Abh. Königlichen Gesellschaft Wiss. zu Göttingen 1857, 7, 3–22. [Google Scholar]
- Bailey, W.N. Transformations of generalized hypergeometric series. Proc. Lond. Math. Soc. 1929. [Google Scholar] [CrossRef]
- Bailey, W.N. Generalized Hypergeometric Series; Cambridge University Press: Cambridge, UK, 1935. [Google Scholar]
- Chaundy, T.W. An extension of hypergeometric functions (I). Q. J. Math. 1943, 14, 55–78. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Karlsson, P.W. Multiple Gaussian Hypergeometric Series; Halsted Press: New York, NY, USA, 1985. [Google Scholar]
- Whittaker, E.T.; Watson, G.N. A Course of Modern Analysis, 4th ed.; Cambridge University Press: Cambridge, UK, 1996. [Google Scholar]
- Beukers, F. Gauss’ hypergeometric function. Prog. Math. 2002, 228, 77–86. [Google Scholar]
- Gasper, G.; Rahman, M. Basic Hypergeometric Series, 2nd ed.; Cambridge University Press: Cambridge, UK, 2004. [Google Scholar]
- Olde Daalhuis, A.B. Hyperterminants I. J. Comput. Appl. Math. 1996, 76, 255–264. [Google Scholar] [CrossRef]
- Olde Daalhuis, A.B. Hyperterminants II. J. Comput. Appl. Math. 1998, 89, 87–95. [Google Scholar] [CrossRef]
- Dwork, B.; Loeser, F. Hypergeometric series. Jpn. J. Math. 1993, 19, 81–129. [Google Scholar] [CrossRef]
- Chu, W. Terminating hypergeometric 2F1(2)-series. Integral Transform. Spec. Funct. 2011, 22, 91–96. [Google Scholar] [CrossRef]
- Yilmazer, R.; Inc, M.; Tchier, F.; Baleanu, D. Particular solutions of the confluent hypergeometric differential equation by using the Nabla fractional calculus operator. Entropy 2016, 18, 49. [Google Scholar] [CrossRef]
- Morita, T.; Sato, K.-I. Solution of inhomogeneous differential equations with polynomial coefficients in terms of the Green’s function. Mathematics 2017, 5, 62. [Google Scholar] [CrossRef]
- Abramov, S.A.; Ryabenko, A.A.; Khmelnov, D.E. Laurent, rational, and hypergeometric solutions of linear q-difference systems of arbitrary order with polynomial coefficients. Progr. Comput. Softw. 2018, 44, 120–130. [Google Scholar] [CrossRef]
- Alfedeel, A.H.A.; Abebe, A.; Gubara, H.M. A generalized solution of Bianchi type-V models with time-dependent G and Λ. Universe 2018, 4, 83. [Google Scholar] [CrossRef]
- Díaz, R.; Teruel, C. q,k-Generalized Gamma and Beta functions. J. Nonlinear Math. Phys. 2005, 12, 118–134. [Google Scholar] [CrossRef]
- Díaz, R.; Pariguan, E. On hypergeometric functions and Pochhammer k-symbol. Divulg. Mat. 2007, 15, 179–192. [Google Scholar]
- Krasniqi, V. A limit for the k-gamma and k-beta function. Int. Math. Forum 2010, 5, 1613–1617. [Google Scholar]
- Krasniqi, V. Inequalities and monotonicity for the ration of k-gamma functions. Sci. Magna 2010, 6, 40–45. [Google Scholar]
- Kokologiannaki, C.G. Properties and inequalities of generalized k-gamma, beta and zeta functions. Int. J. Contemp. Math. Sci. 2010, 5, 653–660. [Google Scholar]
- Mubeen, S.; Habibullah, G.M. An integral representation of some k-hypergeometric functions. Int. Math. Forum 2012, 7, 203–207. [Google Scholar]
- Mubeen, S.; Habibullah, G.M. k-fractional integrals and application. Int. J. Contemp. Math. Sci. 2012, 7, 89–94. [Google Scholar]
- Mubeen, S. Solution of some integral equations involving conuent k-hypergeometricfunctions. Appl. Math. 2013, 4, 9–11. [Google Scholar] [CrossRef]
- Mubeen, S.; Rehman, A. A Note on k-Gamma function and Pochhammer k-symbol. J. Inf. Math. Sci. 2014, 6, 93–107. [Google Scholar]
- Mubeen, S.; Naz, M.A. Rehman, G. Rahman. Solutions of k-hypergeometric differential equations. J. Appl. Math. 2014, 2014, 1–13. [Google Scholar] [CrossRef]
- Mubeen, S.; Iqbal, S. Some inequalities for the gamma k-function. Adv. Inequal. Appl. 2015, 2015, 1–9. [Google Scholar]
- Rehman, A.; Mubeen, S.; Sadiq, N.; Shaheen, F. Some inequalities involving k-gamma and k-beta functions with applications. J. Inequal. Appl. 2014, 2014, 224. [Google Scholar] [CrossRef]
- Rahman, G.; Arshad, M.; Mubeen, S. Some results on a generalized hypergeometric k-functions. Bull. Math. Anal. Appl. 2016, 8, 6–77. [Google Scholar]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, S.; Dong, Y. k-Hypergeometric Series Solutions to One Type of Non-Homogeneous k-Hypergeometric Equations. Symmetry 2019, 11, 262. https://doi.org/10.3390/sym11020262
Li S, Dong Y. k-Hypergeometric Series Solutions to One Type of Non-Homogeneous k-Hypergeometric Equations. Symmetry. 2019; 11(2):262. https://doi.org/10.3390/sym11020262
Chicago/Turabian StyleLi, Shengfeng, and Yi Dong. 2019. "k-Hypergeometric Series Solutions to One Type of Non-Homogeneous k-Hypergeometric Equations" Symmetry 11, no. 2: 262. https://doi.org/10.3390/sym11020262