New Conformable Fractional Integral Inequalities of Hermite–Hadamard Type for Convex Functions
Abstract
:1. Introduction
- 1.
- for all ,
- 2.
- ,
- 3.
- ,
- 4.
- for all constant function ,
- 5.
- ,
- 6.
- .
2. Main Results
3. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Gavrea, B.; Gavrea, I. On some Ostrowski type inequalities. Gen. Math. 2010, 18, 33–44. [Google Scholar]
- Ciatti, P.; Cowling, M.G.; Ricci, F. Hardy and uncertainty inequalities on stratified Lie groups. Adv. Math. 2015, 277, 365–387. [Google Scholar] [Green Version]
- Gunawan, H.; Eridani, E. Fractional integrals and generalized Olsen inequalities. Kyungpook Math. J. 2009, 49, 31–39. [Google Scholar] [CrossRef]
- Sawano, Y.; Wadade, H. On the Gagliardo-Nirenberg type inequality in the critical Sobolev-orrey space. J. Fourier Anal. Appl. 2013, 19, 20–47. [Google Scholar] [CrossRef]
- Wu, S.-H. On the weighted generalization of the Hermite-Hadamard inequality and its applications. Rocky Mt. J. Math. 2009, 39, 1741–1749. [Google Scholar] [CrossRef]
- Mohammed, P.O.; Sarikaya, M.Z. Hermite–Hadamard type inequalities for F-convex function involving fractional integrals. J. Inequalities Appl. 2018, 2018, 359. [Google Scholar] [CrossRef]
- Bakula, M.K.; Ozdemir, M.E.; Pečarić, J. Hadamard type inequalities for m-convex and (α,m)-convex functions. J. Inequal. Pure Appl. Math. 2008, 9, 96. [Google Scholar]
- Alomari, M.; Darus, M.; Kirmaci, U.S. Refinements of Hadamard-type inequalities for quasi-convex functions with applications to trapezoidal formula and to special means. Comp. Math. Appl. 2010, 59, 225–232. [Google Scholar] [CrossRef] [Green Version]
- Yin, H.-P.; Qi, F. Hermite-Hadamard type inequalities for the product of (α,m)-convex functions. J. Nonlinear Sci. Appl. 2015, 8, 231–236. [Google Scholar] [CrossRef]
- Noor, M.A.; Noor, K.I.; Awan, M.U. Some quantum estimates for Hermite-Hadamard inequalities. Appl. Math. Comput. 2015, 251, 675–679. [Google Scholar] [CrossRef]
- Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations; Elsevier B.V.: Amsterdam, The Netherlands, 2006. [Google Scholar]
- Shi, D.-P.; Xi, B.-Y.; Qi, F. Hermite-Hadamard type inequalities for Riemann-Liouville fractional integrals of (α,m)-convex functions. Fract. Differ. Calc. 2014, 4, 33–45. [Google Scholar] [CrossRef]
- Mohammed, P.O. Inequalities of type Hermite-Hadamard for fractional integrals via differentiable convex functions. Turk. J. Anal. Number Theory 2016, 4, 135–139. [Google Scholar]
- Hammad, M.A.; Khalil, R. Conformable fractional heat differential equations. Int. J. Pure Appl. Math. 2014, 94, 215–221. [Google Scholar] [CrossRef]
- Hammad, M.A.; Khalil, R. Abel’s formula and wronskian for conformable fractional differential equations. Int. J. Differ. Equations Appl. 2014, 13, 177–183. [Google Scholar]
- Khalil, R.; Horani, M.A.; Yousef, A.; Sababheh, M. A new definition of fractional derivative. J. Comput. Appl. Math. 2014, 264, 65–70. [Google Scholar] [CrossRef]
- Abdeljawad, T. On conformable fractional calculus. J. Comput. Appl. Math. 2015, 279, 57–66. [Google Scholar] [CrossRef]
- Atangana, A.; Baleanu, D.; Alsaedi, A. New properties of conformable derivative. Open Math. 2015, 13, 889–898. [Google Scholar] [CrossRef]
- Iyiola, O.S.; Nwaeze, E.R. Some new results on the new conformable fractional calculus with application using D’Alambert approach. Progr. Fract. Differ. Appl. 2016, 2, 115–122. [Google Scholar] [CrossRef]
- Katugampola, U. A new fractional derivative with classical properties. arXiv, 2014; arXiv:1410.6535v2. [Google Scholar]
- Zhao, D.; Luo, M. General conformable fractional derivative and its physical interpretation. Calcolo 2017, 54, 903–917. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mohammed, P.O.; Hamasalh, F.K. New Conformable Fractional Integral Inequalities of Hermite–Hadamard Type for Convex Functions. Symmetry 2019, 11, 263. https://doi.org/10.3390/sym11020263
Mohammed PO, Hamasalh FK. New Conformable Fractional Integral Inequalities of Hermite–Hadamard Type for Convex Functions. Symmetry. 2019; 11(2):263. https://doi.org/10.3390/sym11020263
Chicago/Turabian StyleMohammed, Pshtiwan Othman, and Faraidun Kadir Hamasalh. 2019. "New Conformable Fractional Integral Inequalities of Hermite–Hadamard Type for Convex Functions" Symmetry 11, no. 2: 263. https://doi.org/10.3390/sym11020263
APA StyleMohammed, P. O., & Hamasalh, F. K. (2019). New Conformable Fractional Integral Inequalities of Hermite–Hadamard Type for Convex Functions. Symmetry, 11(2), 263. https://doi.org/10.3390/sym11020263