# Optimization of Flocculation Settling Parameters of Whole Tailings Based on Spatial Difference Algorithm

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Algorithm Definitions

#### 2.1. Mechanism of Flocculation Action

#### 2.2. Input Factor Analysis of Flocculation Settlement Parameters of Whole Tailings

#### 2.3. Analysis of Output Factor of Flocculation Settlement Parameters of Whole Tailings

#### 2.4. Parameter Optimization of Spatial Difference Algorithm

#### 2.4.1. Inverse Distance Weighted (IDW) Difference Method

#### 2.4.2. Spline Method

#### 2.4.3. Kriging Method

#### 2.5. Verification of the Accuracy of the Results of Spatial Difference Optimization Model

## 3. Results

#### 3.1. Physical Properties of Whole Tailings

^{2}. If the sand releasing capacity is not less than 100 m

^{3}/h, the settlement velocity should be greater than or equal to 1.05 m/h.

#### 3.2. Establishment of the Sample Set

#### 3.3. Parameter Optimization Model of Spatial Difference Algorithm

#### 3.4. Error Analysis

## 4. Discussions

## 5. Conclusions

## Author Contributions

## Funding

## Conflicts of Interest

## References

- Çırak, M.; Çetin, H. Optimization of Coagulation-Flocculation Process for Treatment of a Colloidal Suspension Containing Dolomite/Clay/Borax. Int. J. Min. Process.
**2017**, 159, 30–41. [Google Scholar] [CrossRef] - Lu, Q.; Yan, B.; Xie, L. A Two-Step Flocculation Process on Oil Sands Tailings Treatment Using Oppositely Charged Polymer Flocculation. Sci. Total. Environ.
**2016**, 565, 369–375. [Google Scholar] [CrossRef] [PubMed] - Angle, W.; Gharib, S. Effects of Sand and Flocculation on Dewaterability of Kaolin Slurries Aimed at Treating Mature Oil Sands Tailings. Chem. Eng. Res. Des.
**2017**, 125, 306–318. [Google Scholar] [CrossRef] - Botha, L.; Soares, P. The Influence of Tailings Composition on Flocculation. Can. J. Chem. Eng.
**2015**, 93, 1514–1523. [Google Scholar] [CrossRef] - Demoz, A. Scaling Inline Static Mixers for Flocculation of Oil Sand Mature Fine Tailings. AIChE J.
**2015**, 61, 1747–1757. [Google Scholar] [CrossRef] - Mandik, I.; Cheirsilp, B.; Boonsawang, P.; Prasertsan, P. Optimization of Flocculation Efficiency of Lipid-Rich Marine Chlorella sp. Biomass and Evaluation of Its Composition in Different Cultivation Modes. Bioresource Technol.
**2015**, 182, 89–97. [Google Scholar] [CrossRef] - Agbovi, K.; Wilson, D. Flocculation Optimization of Orthophosphate with FeCl
_{3}and Alginate Using the Box–Behnken Response Surface Methodology. Ind. Eng. Chem. Res.**2017**, 56, 3145–3155. [Google Scholar] [CrossRef] - Quinlan, J.; Tam, C. Water Treatment Technologies for the Remediation of Naphthenic Acids in Oil Sands Process-Affected Water. Chem. Eng. J.
**2015**, 279, 696–714. [Google Scholar] [CrossRef] - Wang, L.; Wan, L.; Zhang, Y.; Lee, D.; Liu, X.; Chen, X.; Tay, J. Mechanism of Enhanced Sb(V) Removal from Aqueous Solution Using Chemically Modified Aerobic Granules. J. Hazard Mater.
**2015**, 284, 43–49. [Google Scholar] [CrossRef] - Bayabil, K.; Stoof, R.; Lehmann, C.; Yitaferu, B.; Steenhuis, T. Assessing the Potential of Biochar and Charcoal to Improve Soil Hydraulic Properties in the Humid Ethiopian Highlands: The Anjeni Watershed. Geoderma
**2015**, 243–244, 115–123. [Google Scholar] [CrossRef] - Hashemzadeh, F.; Gaffarinejad, A.; Rahimi, R. Porous p-NiO/n-Nb
_{2}O_{5}Nanocomposites Prepared by an EISA Route with Enhanced Photocatalytic Activity in Simultaneous Cr(VI) Reduction and Methyl Orange Decolorization under Visible Light Irradiation. J. Hazard Mater.**2015**, 286, 64–74. [Google Scholar] [CrossRef] [PubMed] - Oladipo, A.; Gazi, M.; Yilmaz, E. Single and Binary Adsorption of Azo and Anthraquinone Dyes by Chitosan-Based Hydrogel: Selectivity Factor and Box-Behnken Process Design. Chem. Eng. Res. Des.
**2015**, 104, 264–279. [Google Scholar] [CrossRef] - Motta, L.; Gaikwad, R.; Botha, L.; Soares, J. Quantifying the Effect of Polyacrylamide Dosage, Na
^{+}and Ca^{2+}Concentrations, and Clay Particle Size on the Flocculation of Mature Fine Tailings with Robust Statistical Methods. Chemosphere**2018**, 208, 263–272. [Google Scholar] [CrossRef] [PubMed] - Botha, L.; Davey, S.; Nguyen, B.; Swarnakar, A.; Rivard, E.; Soares, J. Flocculation of Oil Sands Tailings by Hyperbranched Functionalized Polyethylenes (HBfPE). Miner. Eng.
**2017**, 108, 71–82. [Google Scholar] [CrossRef] - Reis, G.; Oliveira, S.; Palhares, N.; Spinelli, L.; Lucas, E.; Vedoy, D.; Asare, E.; Soares, J. Using Acrylamide/Propylene Oxide Copolymers to Dewater and Densify Mature Fine Tailings. Miner. Eng.
**2016**, 95, 29–39. [Google Scholar] [CrossRef] - Nassar, N.; Betancur, S.; Acevedo, S.; Franco, C.; Cortés, F. Development of a Population Balance Model to Describe the Influence of Shear and Nanoparticles on the Aggregation and Fragmentation of Asphaltene Aggregates. Ind. Eng. Chem. Res.
**2015**, 55, 146–148. [Google Scholar] [CrossRef] - Ochando-Pulido, M.; Stoller, M.; Palma, D.; Martínez-Ferez, A. On the Optimization of a Flocculation Process as Fouling Inhibiting Pretreatment on an Ultrafiltration Membrane during Olive Mill Effluents Treatment. Desalination
**2016**, 393, 151–158. [Google Scholar] [CrossRef] - Xiao, S.; Song, Y.; Tian, Z.; Tu, X.; Hu, X.; Liu, R. Enhanced Mineralization of Antibiotic Berberine by the Photoelectrochemical Process in Presence of Chlorides and Its Optimization by Response Surface Methodology. Environ. Earth Sci.
**2015**, 73, 4947–4955. [Google Scholar] [CrossRef] - Li, Y.; Xu, Y.; Liu, L.; Jiang, X.; Zhang, K.; Zheng, T.; Wang, H. First Evidence of Bioflocculation from ShinellaAlbus with Flocculation Activity on Harvesting of Chlorella Vulgaris Biomass. Bioresource Technol.
**2016**, 218, 807–815. [Google Scholar] [CrossRef] - Buyel, F.; Fischer, R. A Juice Extractor Can Simplify the Downstream Processing of Plant-Derived Biopharmaceutical Proteins Compared to Blade-Based Homogenizers. Process.Biochem.
**2015**, 50, 859–866. [Google Scholar] [CrossRef] - Mnak, G.; Altun, I.; Olgun, M. Fixed Points of f-contractive Type Fuzzy Mappings. J. Intell. Fuzzy Syst.
**2017**, 33, 1435–1439. [Google Scholar] [CrossRef] - Li, P. Content Aware Scheduling Algorithm for SVC Streaming over OFDM. J. ChinaAcad. Electron. Inf. Technol.
**2015**, 10, 169–174. [Google Scholar] - Wang, T.; Cai, T.; Duan, X. Digital Realization of Simplified Three-Level SVM for Vienna Rectifier. J. Power Supply
**2017**, 15, 72–79. [Google Scholar] - Dewasurendra, M.; Vajravelu, K. On the Method of Inverse Mapping for Solutions of Coupled Systems of Nonlinear Differential Equations Arising in Nanofluid Flow, Heat and Mass Transfer. Appl. Math. Nonlinear Sci.
**2018**, 3, 1–14. [Google Scholar] [CrossRef] - Delgado, J.; Peña, J.M. Monotonicity Preserving Representations of Curves and Surfaces. Appl. Math. Nonlinear Sci.
**2016**, 1, 517–528. [Google Scholar] [CrossRef] - Tan, S.; Wang, H.; Huang, Q. Implement of Five-Level Inverter SVPWM Algorithm Based on FPGA. Chin. J. Power Sources
**2015**, 39, 2240–2243. [Google Scholar] - Yao, T.; Zheng, S. FPGA Design Space Circular Interpolation Controller and Implementation. Autom.Instrum.
**2015**, 1, 161–163. [Google Scholar] - Wu, F.; Lv, L.; Chen, R. Based on Analysis of Time Scale Cloud Space Grid Resource Scheduling Algorithm. Compu. Simul.
**2015**, 32, 131–135. [Google Scholar] - Gao, W.; Wang, W. New Isolated Toughness Condition for Fractional (g, f, n)—Critical Graph. Colloq. Math.
**2017**, 147, 55–65. [Google Scholar] [CrossRef]

Particle Size/mm | The Mass Fraction/% |
---|---|

> 5.000 | - |

2.000 < size ≤ 5.000 | 1.5 |

0.500 < size ≤ 2.000 | 10.7 |

0.075 < size ≤ 0.250 | 10.9 |

0.050 < size ≤ 0.075 | 15.3 |

0.005 < size ≤ 0.050 | 54.8 |

≤ 0.005 | 5.2 |

Parameter | The Numerical |
---|---|

The proportion of | 2.79 |

The median grain d_{50}/mm | 0.034 |

Particle size < 74 μm Particle mass fraction | 75.20 |

Effective particle size d_{10} | 0.08 |

Coefficient of unevenness Cu | 4.7 |

The permeability coefficient | 2.8 |

Level | Influencing Factor | |
---|---|---|

Flocculation Consumption/(g·t^{−1}) | $\mathbf{Tailings}\text{}\mathbf{Concentration}{\mathbf{c}}_{\mathit{w}}/\%$ | |

T1 | 10 | 15 |

T2 | 15 | 20 |

T3 | 20 | 25 |

T4 | 25 | 30 |

Experiment No. | Flocculent Unit Consumption q/(g·t^{−1}) | $\mathbf{Tailings}\text{}\mathbf{Concentration}{\mathbf{c}}_{\mathit{w}}/\%$ | Sedimentation Velocity v/(m·h^{−1}) |
---|---|---|---|

1 | 10 | 15 | 1.06 |

2 | 15 | 15 | 1.09 |

3 | 20 | 15 | 1.07 |

4 | 25 | 15 | 1.04 |

5 | 10 | 20 | 1.14 |

6 | 15 | 20 | 1.22 |

7 | 20 | 20 | 1.17 |

8 | 25 | 20 | 1.10 |

9 | 10 | 25 | 1.00 |

10 | 15 | 25 | 1.30 |

11 | 20 | 25 | 1.27 |

12 | 25 | 25 | 1.14 |

13 | 10 | 30 | 0.90 |

14 | 15 | 30 | 1.12 |

15 | 20 | 30 | 1.02 |

16 | 25 | 30 | 0.99 |

Experiment No. | Flocculent Unit Consumption q/(g·t^{−1}) | $\mathbf{Tailings}\text{}\mathbf{Concentration}\text{}{\mathbf{c}}_{\mathit{w}}/\%$ | Sedimentation Velocity v/(m·h^{−1}) |
---|---|---|---|

1 | 0.171 | 0.379 | 0.008 |

2 | 0.389 | 0.379 | 0.009 |

3 | 0.586 | 0.379 | 0.008 |

4 | 0.794 | 0.379 | 0.007 |

5 | 0.171 | 0.586 | 0.011 |

6 | 0.389 | 0.586 | 0.014 |

7 | 0.586 | 0.586 | 0.012 |

8 | 0.794 | 0.586 | 0.009 |

9 | 0.171 | 0.794 | 0.005 |

10 | 0.379 | 0.794 | 0.018 |

11 | 0.586 | 0.794 | 0.016 |

12 | 0.794 | 0.794 | 0.011 |

13 | 0.171 | 1.000 | 0.000 |

14 | 0.379 | 1.000 | 0.010 |

15 | 0.586 | 1.000 | 0.060 |

16 | 0.794 | 1.000 | 0.005 |

Serial Number | Actual Value of Settlement Velocity/(cm·h^{−1}) | Optimum Settlement Velocity Value/(cm·h^{−1}) | Relative Error/% |
---|---|---|---|

1 | 302.65 | 313.23 | 3.5 |

2 | 167.87 | 172.45 | 2.7 |

3 | 112.56 | 111.32 | 1.1 |

4 | 156.76 | 155.43 | 0.8 |

5 | 213.45 | 215.65 | 1.0 |

6 | 222.45 | 219.89 | 1.5 |

7 | 324.56 | 325.76 | 0.3 |

8 | 325.67 | 332.54 | 2.1 |

9 | 312.35 | 315.26 | 0.9 |

11 | 265.45 | 270.21 | 1.7 |

12 | 225.65 | 228.65 | 1.3 |

13 | 314.32 | 318.21 | 1.2 |

14 | 253.76 | 256.34 | 1.0 |

15 | 235.65 | 237.65 | 0.8 |

16 | 218.76 | 220.12 | 0.6 |

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Huang, Y.; Chen, J.; Wang, C.
Optimization of Flocculation Settling Parameters of Whole Tailings Based on Spatial Difference Algorithm. *Symmetry* **2019**, *11*, 1371.
https://doi.org/10.3390/sym11111371

**AMA Style**

Huang Y, Chen J, Wang C.
Optimization of Flocculation Settling Parameters of Whole Tailings Based on Spatial Difference Algorithm. *Symmetry*. 2019; 11(11):1371.
https://doi.org/10.3390/sym11111371

**Chicago/Turabian Style**

Huang, Yanlong, Jianzhong Chen, and Chuanzhen Wang.
2019. "Optimization of Flocculation Settling Parameters of Whole Tailings Based on Spatial Difference Algorithm" *Symmetry* 11, no. 11: 1371.
https://doi.org/10.3390/sym11111371