Exploiting Weak Field Gravity-Maxwell Symmetry in Superconductive Fluctuations Regime
Abstract
:1. Introduction
2. Weak Field Approximation
2.1. Gravito-Maxwell Equations
2.2. Generalized Maxwell Equations
3. The Model
4. Results
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- DeWitt, B.S. Superconductors and gravitational drag. Phys. Rev. Lett. 1966, 16, 1092–1093. [Google Scholar] [CrossRef]
- Kiefer, C.; Weber, C. On the interaction of mesoscopic quantum systems with gravity. Ann. Phys. 2005, 14, 253–278. [Google Scholar] [CrossRef] [Green Version]
- Papini, G. Detection of inertial effects with superconducting interferometers. Phys. Lett. A 1967, 24, 32–33. [Google Scholar] [CrossRef]
- Papini, G. Superconducting and normal metals as detectors of gravitational waves. Lett. Nuovo Cim. 1970, 4S1, 1027–1032. [Google Scholar] [CrossRef]
- Rothen, F. Application de la theorie relativiste des phenomenes irreversible a la phenomenologie de la supraconductivite. Helv. Phys. Acta 1968, 41, 591. [Google Scholar]
- Rystephanick, R. On the london moment in rotating superconducting cylinders. Can. J. Phys. 1973, 51, 789–794. [Google Scholar] [CrossRef]
- Hirakawa, H. Superconductors in gravitational field. Phys. Lett. A 1975, 53, 395–396. [Google Scholar] [CrossRef]
- Minasyan, I. Londons equations in riemannian space. Doklady Akademii Nauk SSSR 1976, 228, 576–578. [Google Scholar]
- Anandan, J. Gravitational and rotational effects in quantum interference. Phys. Rev. D 1977, 15, 1448. [Google Scholar] [CrossRef]
- Anandan, J. Interference, gravity and gauge fields. IL Nuovo Cimento A (1965–1970) 1979, 53, 221–250. [Google Scholar] [CrossRef]
- Anandan, J. Relativistic thermoelectromagnetic gravitational effects in normal conductors and superconductors. Phys. Lett. A 1984, 105, 280–284. [Google Scholar] [CrossRef]
- Anandan, J. Relativistic gravitation and superconductors. Class. Quantum Grav. 1994, 11, A23. [Google Scholar] [CrossRef]
- Ross, D. The london equations for superconductors in a gravitational field. J. Phys. A Math. Gen. 1983, 16, 1331. [Google Scholar] [CrossRef]
- Felch, S.B.; Tate, J.; Cabrera, B.; Anderson, J.T. Precise determination of h/me using a rotating, superconducting ring. Phys. Rev. B 1985, 31, 7006–7011. [Google Scholar] [CrossRef] [PubMed]
- Dinariev, O.Y.; Mosolov, A. A relativistic effect in the theory of superconductivity. Soviet Phys. Doklady 1987, 32, 1987. [Google Scholar]
- Peng, H.; Torr, D.; Hu, E.; Peng, B. Electrodynamics of moving superconductors and superconductors under the influence of external forces. Phys. Rev. B 1991, 43, 2700. [Google Scholar] [CrossRef] [PubMed]
- Peng, H. A new approach to studying local gravitomagnetic effects on a superconductor. Gen. Relat. Grav. 1990, 22, 609–617. [Google Scholar] [CrossRef]
- Peng, H.; Lind, G.; Chin, Y. Interaction between gravity and moving superconductors. Gen. Relat. Grav. 1991, 23, 1231–1250. [Google Scholar] [CrossRef]
- Li, N.; Torr, D. Effects of a gravitomagnetic field on pure superconductors. Phys. Rev. D 1991, 43, 457. [Google Scholar] [CrossRef]
- Li, N.; Torr, D.G. Gravitational effects on the magnetic attenuation of superconductors. Phys. Rev. B 1992, 46, 5489. [Google Scholar] [CrossRef]
- Torr, D.G.; Li, N. Gravitoelectric-electric coupling via superconductivity. Found. Phys. Lett. 1993, 6, 371–383. [Google Scholar] [CrossRef]
- de Andrade, L.G. Torsion, superconductivity, and massive electrodynamics. Int. J. Theor. Phys. 1992, 31, 1221–1227. [Google Scholar] [CrossRef]
- Podkletnov, E.; Nieminen, R. A possibility of gravitational force shielding by bulk YBa2Cu3O7-X superconductor. Phys. C Supercond. 1992, 203, 441–444. [Google Scholar] [CrossRef]
- Li, N.; Noever, D.; Robertson, T.; Koczor, R.; Brantley, W. Static test for a gravitational force coupled to type II YBCO superconductors. Phys. C Supercond. 1997, 281, 260–267. [Google Scholar] [CrossRef]
- de Podesta, M.; Bull, M. Alternative explanation of “gravitational screening” experiments. Phys. C Supercond. 1995, 253, 199–200. [Google Scholar] [CrossRef]
- Unnikrishnan, C. Does a superconductor shield gravity? Phys. C Supercond. 1996, 266, 133–137. [Google Scholar] [CrossRef]
- Tajmar, M.; Plesescu, F.; Seifert, B. Measuring the dependence of weight on temperature in the low-temperature regime using a magnetic suspension balance. Meas. Sci. Technol. 2009, 21, 015111. [Google Scholar] [CrossRef]
- Tajmar, M. Evaluation of enhanced frame-dragging in the vicinity of a rotating niobium superconductor, liquid helium and a helium superfluid. Phys. C Supercond. 2011, 24, 125011. [Google Scholar] [CrossRef]
- Podkletnov, E.; Modanese, G. Investigation of high voltage discharges in low pressure gases through large ceramic superconducting electrodes. J. Low Temp. Phys. 2003, 132, 239–259. [Google Scholar] [CrossRef]
- Poher, C.; Modanese, G. Enhanced induction into distant coils by ybco and silicon-graphite electrodes under large current pulses. Phys. Essays 2017, 30, 435–441. [Google Scholar] [CrossRef]
- Ciubotariu, C.; Agop, M. Absence of a gravitational analog to the meissner effect. Gene. Relat. Grav. 1996, 28, 405–412. [Google Scholar] [CrossRef]
- Agop, M.; Buzea, C.G.; Griga, V.; Ciubotariu, C.; Buzea, C.; Stan, C.; Jatomir, D. Gravitational paramagnetism, diamagnetism and gravitational superconductivity. Aust. J. Phys. 1996, 49, 1063–1074. [Google Scholar] [CrossRef]
- Agop, M.; Ioannou, P.; Diaconu, F. Some implications of gravitational superconductivity. Prog. Theor. Phys. 2000, 104, 733–742. [Google Scholar] [CrossRef]
- Agop, M.; Buzea, C.G.; Nica, P. Local gravitoelectromagnetic effects on a superconductor. Phys. C Supercond. 2000, 339, 120–128. [Google Scholar] [CrossRef]
- Ivanov, B. Gravitational effects in a spherical solenoid. Mod. Phys. Lett. A 1997, 12, 285–294. [Google Scholar] [CrossRef]
- Ahmedov, B. General relativistic thermoelectric effects in superconductors. Gen. Relat. Grav. 1999, 31, 357–369. [Google Scholar] [CrossRef]
- Ahmedov, B.; Kagramanova, V. Electromagnetic effects in superconductors in stationary gravitational field. Int. J. Mod. Phys. D 2005, 14, 837–847. [Google Scholar] [CrossRef]
- Tajmar, M.; de Matos, C.J. Gravitomagnetic field of a rotating superconductor and of a rotating superfluid. Physica 2003, C385, 551–554. [Google Scholar] [CrossRef]
- de Matos, C.J.; Tajmar, M. Gravitomagnetic London moment and the graviton mass inside a superconductor. Physica 2003, C432, 167. [Google Scholar] [CrossRef]
- Tajmar, M.; de Matos, C.J. Extended analysis of gravitomagnetic fields in rotating superconductors and superfluids. Physica 2005, C420, 56. [Google Scholar] [CrossRef]
- Tajmar, M. Electrodynamics in superconductors explained by proca equations. Phys. Lett. A 2008, 372, 3289–3291. [Google Scholar] [CrossRef]
- Ning, W. Gravitational shielding effect in gauge theory of gravity. Commun. Theor. Phys. 2004, 41, 567. [Google Scholar] [CrossRef]
- Chiao, R.Y. The interface between quantum mechanics and general relativity. J. Mod. Opt. 2006, 53, 16–17. [Google Scholar] [CrossRef]
- de Matos, C.J. Gravitoelectromagnetism and dark energy in superconductors. Int. J. Mod. Phys. D 2007, 16, 2599–2606. [Google Scholar] [CrossRef]
- de Matos, C.J. Electromagnetic dark energy and gravitoelectrodynamics of superconductors. Phys. C Supercond. 2008, 468, 210–213. [Google Scholar] [CrossRef] [Green Version]
- de Matos, C.J. Gravitational force between two electrons in superconductors. Phys. C Supercond. 2008, 468, 229–232. [Google Scholar] [CrossRef] [Green Version]
- de Matos, C.J. Physical vacuum in superconductors. J. Supercond. Novel Magn. 2010, 23, 1443–1453. [Google Scholar] [CrossRef]
- de Matos, C.J. Modified entropic gravitation in superconductors. Phys. C Supercond. 2012, 472, 5–9. [Google Scholar] [CrossRef] [Green Version]
- Inan, N.; Thompson, J.; Chiao, R. Interaction of gravitational waves with superconductors. Fortschritte der Physik 2017, 65, 1600066. [Google Scholar] [CrossRef]
- Inan, N. A new approach to detecting gravitational waves via the coupling of gravity to the zero-point energy of the phonon modes of a superconductor. Int. J. Mod. Phys. D 2017, 26, 1743031. [Google Scholar] [CrossRef]
- Atanasov, V. The geometric field (gravity) as an electro-chemical potential in a ginzburg-landau theory of superconductivity. Phys. B Cond. Matter 2017, 517, 53–58. [Google Scholar] [CrossRef]
- Sbitnev, V.I. Quaternion algebra on 4d superfluid quantum space-time: Gravitomagnetism. Found. Phys. 2019, 49, 107–143. [Google Scholar] [CrossRef]
- Modanese, G. Theoretical analysis of a reported weak-gravitational-shielding effect. EPL (Europhys. Lett.) 1996, 35, 413. [Google Scholar] [CrossRef]
- Modanese, G. Role of a “local” cosmological constant in euclidean quantum gravity. Phys. Rev. D 1996, 54, 5002. [Google Scholar] [CrossRef]
- Ummarino, G.A.; Gallerati, A. Superconductor in a weak static gravitational field. Eur. Phys. J. 2017, C77, 549. [Google Scholar] [CrossRef]
- Cyrot, M. Ginzburg-landau theory for superconductors. Rep. Prog. Phys. 1973, 36, 103–158. [Google Scholar] [CrossRef]
- Zagrodziński, J.; Nikiciuk, T.; Abal’osheva, I.; Lewandowski, S. Time-dependent ginzburg–landau approach and its application to superconductivity. Supercond. Sci. Technol. 2003, 16, 936. [Google Scholar] [CrossRef]
- Alstrøm, T.S.; Sørensen, M.P.; Pedersen, N.F.; Madsen, S. Magnetic flux lines in complex geometry type-ii superconductors studied by the time dependent ginzburg-landau equation. Acta Appl. Math. 2011, 115, 63–74. [Google Scholar] [CrossRef]
- Mashhoon, B.; Paik, H.J.; Will, C.M. Detection of the gravitomagnetic field using an orbiting superconducting gravity gradiometer. theoretical principles. Phys. Rev. D 1989, 39, 2825–2838. [Google Scholar] [CrossRef]
- Ruggiero, M.L.; Tartaglia, A. Gravitomagnetic effects. IL Nuovo Cimento B 2002, 117, 743–768. [Google Scholar]
- Larkin, A.; Varlamov, A. Fluctuation Phenomena in Superconductors. In Handbook on Superconductivity: Conventional and Unconventional Superconductors; Springer: Berlin, Germany, 2002; p. 1. [Google Scholar]
- Wald, R.M. General Relativity; University of Chicago Press: Chicago, IL, USA, 1984; p. 491. [Google Scholar]
- Misner, C.W.; Thorne, K.S.; Wheeler, J.A. Gravitation; Macmillan: London, UK, 1973. [Google Scholar]
- Braginsky, V.B.; Caves, C.M.; Thorne, K.S. Laboratory experiments to test relativistic gravity. Phys. Rev. D 1977, 15, 2047. [Google Scholar] [CrossRef]
- Huei, P. On calculation of magnetic-type gravitation and experiments. Gen. Relat. Grav. 1983, 15, 725–735. [Google Scholar] [CrossRef]
- Behera, H. Comments on gravitoelectromagnetism of Ummarino and Gallerati in “Superconductor in a weak static gravitational field” vs. other versions. Eur. Phys. J. 2017, C77. [Google Scholar] [CrossRef]
- Hurault, J. Nonlinear effects on the conductivity of a superconductor above its transition temperature. Phys. Rev. 1969, 179, 494. [Google Scholar] [CrossRef]
- Schmid, A. Diamagnetic susceptibility at the transition to the superconducting state. Phys. Rev. 1969, 180, 527. [Google Scholar] [CrossRef]
- de Gennes, P.-G. Superconductivity of Metals and Alloys; CRC Press: Boca Raton, FL, USA, 2018. [Google Scholar]
Al | 15500 | 531313 | ||||
Pb | 870 | 73924 | ||||
YBCO | 30 | 895 | ||||
BSCCO | 10 | 333 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ummarino, G.A.; Gallerati, A. Exploiting Weak Field Gravity-Maxwell Symmetry in Superconductive Fluctuations Regime. Symmetry 2019, 11, 1341. https://doi.org/10.3390/sym11111341
Ummarino GA, Gallerati A. Exploiting Weak Field Gravity-Maxwell Symmetry in Superconductive Fluctuations Regime. Symmetry. 2019; 11(11):1341. https://doi.org/10.3390/sym11111341
Chicago/Turabian StyleUmmarino, Giovanni Alberto, and Antonio Gallerati. 2019. "Exploiting Weak Field Gravity-Maxwell Symmetry in Superconductive Fluctuations Regime" Symmetry 11, no. 11: 1341. https://doi.org/10.3390/sym11111341