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Abstract: We study the behaviour of a superconductor in a weak static gravitational field for
temperatures slightly greater than its transition temperature (fluctuation regime). Making use of the
time-dependent Ginzburg–Landau equations, we find a possible short time alteration of the static
gravitational field in the vicinity of the superconductor, providing also a qualitative behaviour in
the weak field condition. Finally, we compare the behaviour of various superconducting materials,
investigating which parameters could enhance the gravitational field alteration.
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1. Introduction

It is since 1966, with the paper of DeWitt [1], that there has been great interest in the interplay
between the theory of gravitation and superconductivity [2]. In the following years were produced
a lot of theoretical papers about this topic [3–22], until Podkletnov and Nieminem claimed to have
observed a gravitational shielding in a disk of YBaCuO (YBCO) [23], an high-Tc superconductor
(HTCS). Of course, after the publication of this paper, other groups tried to repeat the experiment
obtaining controversial results [24–30], so that the question is still open.

Many researchers tried to give a theoretical explanation [31–52] of the experimental results
of Podkletnov and Nieminem in subsequent years, although, in our opinion, the clearest work
was made by Modanese in 1996 [53,54], interpreting the experimental results in the frame of
a quantum field formulation. However, the complexity of the formalism makes it difficult to extract
quantitative predictions.

In a previous work [55], we determined the possible alteration of a static gravitational
field in a superconductor making use of the time-dependent Ginzburg–Landau equations [56–58],
providing also an analytic solution in the weak field condition [59,60]. Now, we develop quantitative
calculations in a range of temperatures very close but higher than the critical temperature, in the
regime of fluctuations [61].

2. Weak Field Approximation

Let us consider a nearly flat spacetime configuration (weak gravitational field) where the metric
gµν can be expanded as:

gµν ' ηµν + hµν , (1)
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with hµν small perturbation of the flat Minkowski metric; we work in the mostly plus convention,
ηµν = diag(−1,+1,+1,+1). The inverse metric in the linear approximation is given by

gµν ' ηµν − hµν , (2)

and the Christoffel symbols, to linear order in hµν are written as

Γλ
µν '

1
2

ηλρ
(
∂µhνρ + ∂νhρµ − ∂ρhµν

)
. (3)

The Riemann tensor is defined as

Rσ
µλν = 2 ∂[λΓσ

ν]µ + 2 Γσ
ρ[λ Γρ

ν]µ , (4)

while the Ricci tensor is given by the contraction Rµν = Rσ
µσν. To linear order in hµν, the latter reads [55]

Rµν ' ∂ρ∂(µhν)ρ −
1
2

∂2hµν −
1
2

∂µ∂νh , (5)

with h = hσ
σ . The Einstein equations [62,63] are written as

G
(E)

µν = Rµν −
1
2

gµν R = 8πGN Tµν , (6)

and the l.h.s. in first-order approximation reads

G
(E)

µν ' ∂ρ∂(µhν)ρ −
1
2

∂2hµν −
1
2

∂µ∂νh− 1
2

ηµν

(
∂ρ∂σhρσ − ∂2h

)
. (7)

Introducing the symmetric tensor

h̄µν = hµν −
1
2

ηµν h , (8)

the above expression simplifies in [55]

G
(E)

µν ' ∂ρ∂(µ h̄ν)ρ −
1
2

∂2h̄µν −
1
2

ηµν ∂ρ∂σ h̄ρσ = ∂ρ
(

∂[ν h̄ρ]µ + ∂σηµ[ρ h̄ν]σ

)
. (9)

If we now define the tensor

Gµνρ ≡ ∂[ν h̄ρ]µ + ∂σηµ[ρ h̄ν]σ , (10)

the Einstein equations can be rewritten in the compact form:

G
(E)

µν = ∂ρGµνρ = 8πGN Tµν . (11)

We can impose a gauge fixing using the harmonic coordinate condition [62]:

2xµ = 0 ⇔ ∂µ

(√
−g gµν

)
= 0 ⇔ gµν Γλ

µν = 0 , (12)

also called De Donder gauge. The requirement of a coordinate condition plays the role of a gauge
fixing, uniquely determining the physical configuration and removing indeterminacy; in harmonic
coordinates, the metric satisfies a manifestly Lorenz-covariant condition, so that the De Donder gauge
becomes a natural choice. Moreover, if one considers the weak-field expansion of the Einstein-Hilbert
action in De Donder gauge, the action itself (as well as the graviton propagator) takes a particularly
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simple form. If we now use Equations (1) and (3) in the last of previous (12), we find, in first-order
approximation

0 ' ∂µhµν − 1
2

∂νh , (13)

that is, we have the relations

∂µhµν ' 1
2

∂νh ⇔ ∂µhµν '
1
2

∂νh , (14)

that, in turns, imply the Lorenz gauge condition:

∂µ h̄µν ' 0 . (15)

The above result simplifies expression (10) for Gµνρ, which takes the form

Gµνρ ' ∂[ν h̄ρ]µ . (16)

2.1. Gravito-Maxwell Equations

Now, let us define the fields [55]

Eg ≡ Ei = − 1
2

G00i = − 1
2

∂[0h̄i]0 , (17.i)

Ag ≡ Ai =
1
4

h̄0i , (17.ii)

Bg ≡ Bi =
1
4

εi
jk G0jk , (17.iii)

where, using (16), we have

G0ij = ∂[i h̄j]0 =
1
2
(
∂i h̄j0 − ∂j h̄i0

)
= 4 ∂[i Aj] . (18)

First, we find

Bg =
1
4

εi
jk 4 ∂[j Ak] = εi

jk ∂j Ak = ∇×Ag =⇒ ∇ · Bg = 0 . (19)

Then, one also has

∇ · Eg = ∂iEi = −∂i G00i
2

= −8πGN

T00

2
= 4πGN ρg , (20)

using Equation (11) and having defined ρg ≡ −T00. If we take the curl of Eg, we obtain

∇× Eg = εi
jk ∂jEk = −εi

jk ∂j
G00k

2
= −1

4
4 ∂0 εi

jk ∂j Ak = −∂0Bi = −
∂Bg

∂t
, (21)

while, for the curl of Bg,

∇× Bg = εi
jk ∂jBk =

1
4

εi
jk εk

`m ∂jG0`m =
1
2
(
∂µG0iµ − ∂0G00i

)
=

=
1
2
(8πGN T0i − ∂0G00i) = 4πGN ji +

∂Ei
∂t

= 4πGN jg +
∂Eg

∂t
,

(22)

using again Equation (11) and having defined jg ≡ ji ≡ T0i.
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Following the above prescriptions, we obtained for the fields (17) the set of equations:

∇ · Eg = 4πGN

m2

e2 ρg =
ρg

εg
;

∇ · Bg = 0 ;

∇× Eg = −
∂Bg

∂t
;

∇× Bg = 4πGN

m2

c2 e2 jg +
1
c2

∂Eg

∂t
= µg jg +

1
c2

∂Eg

∂t
,

(23)

having restored physical units [55]. This equations are formally equivalent to Maxwell equations,
with Eg and Bg gravitoelectric and gravitomagnetic field respectively, having defined the vacuum
gravitational permittivity and the vacuum gravitational permeability as:

εg =
1

4πGN

e2

m2 , µg = 4πGN

m2

c2 e2 . (24)

For example, on the Earth surface, Eg is simply the Newtonian gravitational acceleration and the
Bg field is related to angular momentum interactions [17,33,34,64,65].

2.2. Generalized Maxwell Equations

Now we introduce the generalized electric/magnetic field, scalar and vector potentials, containing
both electromagnetic and gravitational terms:

E = Ee +
m
e

Eg ; B = Be +
m
e

Bg ; φ = φe +
m
e

φg ; A = Ae +
m
e

Ag , (25)

where m and e are the mass and electronic charge, respectively, the subscripts identifying the
electromagnetic and gravitational contributions. The generalized Maxwell equations for the fields (25)
then become [55,66]:

∇ · E =

(
1
εg

+
1
ε0

)
ρ ;

∇ · B = 0 ;

∇× E = −∂B
∂t

;

∇× B =
(
µg + µ0

)
j +

1
c2

∂E
∂t

,

(26)

with

ρg =
e
m

ρ , jg =
e
m

j , (27)

where ε0 and µ0 are the electric permittivity and magnetic permeability in the vacuum, and ρ and j are
the electric charge density and electric current density respectively.

We have shown how to define a new set generalized Maxwell equations for generalized electric E
and magnetic B fields, in the limit of weak gravitational fields. In the following sections we will use
this results to study the behaviour of a superconductor in the fluctuation regime, i.e., very close to its
critical temperature Tc.
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3. The Model

The behaviour of a superconductor in the vicinity of its critical temperature has been extensively
studied. This particular region of temperature is characterized by thermodynamic fluctuations of the
order parameter, giving rise to a gradual increase of the resistivity of the material from zero to its
normal state value, for temperatures T > Tc . This happens because, above the critical temperature
Tc, the order parameter fluctuations create superfluid regions in which electrons are accelerated.
For temperatures larger than Tc, the average size of these regions is much greater than the mean free
path, though it decreases with the rise in temperature of the sample.

The described regime can be studied by using the time-dependent Ginzburg-Landau
equations [56]. Of course, we have to be sufficiently far from the critical point for this description to be
valid (essentially we are dealing with a mean field theory). Moreover, here we suppose we deal with
sufficiently dirty materials, in order to observe the effects of the fluctuations over a sizable range of
temperature, i.e. the electronic mean free path ` in the normal material has to be less than 10 Å.

The time-dependent Ginzburg-Landau equations can be written, for temperatures larger than Tc,
with just the linear term, in the gauge-invariant form [67,68]:

Γ
(

h̄
∂

∂t
− 2 i e φ

)
ψ =

1
2m

(h̄∇− 2 i e A)2 ψ + α ψ , (28)

where ψ(x, t) is the order parameter, A(x, t) is the potential vector and φ(x, t) is the electric potential.

Moreover, once defined ε(T) =
√

T−Tc
Tc

, we also have

α = − h̄2

2 m ξ2 , ξ = ξ(T) =
ξ0√
ε(T)

, Γ =
|α|

ε(T)
π

8 kB Tc
, (29)

where ξ0 = ξ(0) is the BCS coherence length. If we put

ψ(x, t) = f (x, t) exp
(
i g(x, t)

)
, (30)

we obtain two equations for the functions f (x, t) and g(x, t):

Γ h̄
∂ f
∂t

= α f +
h̄2

2m
∆ f − 1

2
m v2

s f , (31.i)

Γ h̄ f
∂g
∂t

= 2 e Γ φ f − h̄2

2m
f ∆g− 2 h̄ vs · ∇ f , (31.ii)

where
vs =

1
m

(
h̄∇g + 2

e
c

A
)

(32)

is the superfluid speed and where the associated current density is

js = −2
e
m
|ψ|2

(
h∇g + 2

e
c

A
)

= −2 e f 2 vs . (33)

Now, we consider a fluctuation of the wave vector for the function f . Let fk be the value of f for
a fluctuation of the wave vector k. The above equations can be recast in a more convenient form:

Γ h̄
∂ fk
∂t

= α fk −
h̄2

2m
k2 fk −

1
2

m v2
s fk , (34.i)

∂vs

∂t
= −2

e
m

E (34.ii)
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where the last expression (34.ii) is obtained by using Equation (32) and ∇φ = −E− 1
c

∂A
∂t and taking

the gradient of Equation (31.ii). By integrating (34.ii) from zero to t, we obtain

Γ h̄
∂ fk
∂t

=

(
α− h̄2

2m
k2 − 2

e2

m
E2 t2

)
fk , (35)

so that fk is given by

fk(t) = fk(0) exp


(

α− h̄2

2m k2
)

t− 2
3

e2

m E2 t3

Γ h̄

 , (36)

with f 2
k (0) =

kB T
2
(
|α|+ h̄2

2m k2
) as it was calculated in [69]. Then, the current jsk(t) can be written as

jsk(t) = 4
e2

m
E t f 2

k (0) exp

2

(
α− h̄2

2m k2
)

t− 2
3

e2

m E2 t3

Γ h̄

 , (37)

At this point we sum over k. The simpler situation is a three-dimensional sample whose
dimensions are greater than the correlation length ξ, so that we obtain

〈 js(t)〉 =
1

8π3

∫ +∞

0
jsk(k, t) 4π k2 dk . (38)

The potential vector A(x, y, z, t) can be calculated from:

A(x, y, z, t) =
1

4π

∫ js(t) dx′ dy′ dz′√
(x− x′)2 + (y− y′)2 + (z− z′)2

(39)

when the time variations of external fields are small. The generalized electric field E(x, y, z, t) of
Equation (25), in the case under consideration, can be written as

E(x, y, z, t) = −1
c

∂A(x, y, z, t)
∂t

+
m
e

g = −1
c

∂js(t)
∂t

C(x, y, z) +
m
e

g , (40)

where we have considered the static weak (Earth-surface) gravitational field contribution g, and where
C(x, y, z) is a geometrical factor that depends on the shape of the superconductor and on the space point
where we calculate the gravitational fluctuations caused by the presence of the superconductor itself.
Of course, when E = m

e g we are in the weak field regime and we can neglect the term proportional to
t3 in the exponential. In the latter case, for the realisation of an experiment, one needs a weak magnetic
field (we are around Tc) in order to have the superconductor in the normal state, and turn off the
magnetic field at the time t = 0.

4. Results

In Figures 1 and 2 we show the variation of the gravitational field as a function of time,
measured on the axis of a superconductive disk with bases parallel to the ground, at a fixed distance d
from the surface, respectively for low-Tc (Al and Pb) and high-Tc superconductors (YBCO and BSCCO).
The effect is calculated in the range of temperature where superconductive fluctuations are present.
The system is initially at a temperature very close to Tc, and is put it in the normal state by using a weak
static magnetic field (near Tc the upper critical field tends to zero). At the time t = 0, the magnetic
field is removed so that the system goes in the superconductive state.

It is interesting to note that, in a very short initial time interval, the gravitational field is reduced
w.r.t. its unperturbed value. After that, it increases up to a maximum value at the time t = τ0

and then decreases to the standard external value. In our previous paper, in the regime under Tc,
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we found a weak shielding of the external gravitational field [55], with the corresponding solution for
a simple case. The value ∆ is the maximum variation of the external gravitational field: in principle,
field variation is measurable (especially in high-Tc superconductors), while the problem lies in the
very short time intervals in which the effect manifests itself.

In Figure 3 it is shown the field variation effect as a function of distance from the disk surface,
measured along the axis of the disk at the fixed time t = τ0 that maximizes the effect. In Table 1 we
summarize the experimental data for the superconductive materials under consideration.

It is instructive to study the values of the parameters that maximize the effect in intensity and
time interval. After simple but long calculations, it is possible to demonstrate that τ0 ∝ (T − Tc)−1,
so it is fundamental to be very close to the critical temperature in order to increase the time range in
which the effect takes place. The maximum value of the correction for the external field is obtained for
t = τ0 and is proportional to ξ−1(T): this means that the effect is larger in high-Tc superconductors,
having the latter small coherence length. Clearly this behaviour makes the experimental detection
difficult, since if we are close to Tc we find an increase for the value of τ0 together with a decrease for
the alteration of gravitational field, owing to the coherence length divergence at T = Tc .

Table 1. Input and output parameters for the four different superconductors.

Tc (K) T (K) ξ0 (Å) ξ(T) (Å) τ0 (s) ∆(m/s2)

Al 1.175 1.176 15500 531313 7.45× 10−10 5.37× 10−10

Pb 7.220 7.221 870 73924 7.45× 10−10 2.37× 10−8

YBCO 89.0 89.1 30 895 7.50× 10−12 2.41× 10−5

BSCCO 111.0 111.1 10 333 7.50× 10−12 8.08× 10−5

1.´ 10-9 3.´ 10-9 5.´ 10-9 7.´ 10-9

PSfrag repla
ements

(
m/s2

)

(s)

g +∆1

g +∆2

g

Al, ∆1 = 5.37 · 10−10
m/s2

Pb, ∆2 = 2.37 · 10−8
m/s2

Figure 1. The variation of gravitational field as a function of time in the vicinity of a superconductive
sample of Al (green solid line) and one of Pb (orange dot-dashed line). The field is measured along the
axis of the disk, with bases parallel to the ground, at a fixed distance d = 0.5 cm above the disk surface.
The radius of the disk is R = 10 cm and the thickness is h = 1 cm.
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1.´ 10-11 3.´ 10-11 5.´ 10-11 7.´ 10-11

PSfrag repla
ements

(
m/s2

)

(s)

g +∆3

g +∆4

g

YBCO, ∆3 = 2.41 · 10−5
m/s2

BSCCO, ∆4 = 8.09 · 10−5
m/s2

Figure 2. The variation of gravitational field as a function of time in the vicinity of a superconductive
disk of YBCO (blue solid line) and BSCCO (purple dot-dashed line). The field is measured along the
axis of the disk, with bases parallel to the ground, at a fixed distance d = 0.5 cm above the disk surface.
The radius of the disk is R = 10 cm and the thickness is h = 1 cm.

10 30 50 70 90 110 130

1.5´ 10-5

3.5´ 10-5

5.5´ 10-5

7.5´ 10-5

PSfrag repla
ements

∆g
(
m/s2

)

(
m)

YBCO, t = 7.5 · 10−12
s

BSCCO, t = 7.5 · 10−12
s

Figure 3. The variation of gravitational field as a function of distance in the vicinity of a superconductive
sample of YBCO (grey solid line) and one of BSCCO (light blue dot-dashed line). The field is measured
along the axis of the disk, with bases parallel to the ground, at the fixed time t = τ0 = 7.50× 10−12 s
that maximizes the variation. The radius of the disk is R = 10 cm and the thickness is h = 1 cm.

5. Conclusions

We have calculated the possible alteration of a static gravitational field in the vicinity of
a superconductor in the regime of fluctuations. We have also shown that the effect should be weak
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(though perceptible), but it occurs in very short time intervals, making direct measurements difficult
to obtain. Probably some ingredient for a complete depiction of the gravity-superfluid interaction has
to be included, as long as it exists, for a more detailed characterization of the phenomenon.

Clearly, the goal is to obtain non-negligible experimental evidences (gravitational field
perturbations) in workable time scales, trying to optimize contrasting effects by choosing appropriate
temperature and sample coherence length. At present, the best option is to choose a HTCS (since very
short coherence length increases the intensity of perturbation) and put the system at a temperature
very close to Tc (increase of time range where the effect occurs). It is also possible that the simultaneous
presence of an electromagnetic field with particular characteristics, together with a suitable setting for
the geometry of the experiment, could increase the magnitude of the effects under consideration.
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