#
Renormalizable and Unitary Model of Quantum Gravity^{ †}

^{†}

## Abstract

**:**

## 1. Introduction

## 2. Results

## 3. Discussions

## 4. Conclusions

## Funding

## Acknowledgments

## Conflicts of Interest

## References

- Hooft, G.; Veltman, M.J.G. One-loop divergencies in the theory of gravitation. Ann. Inst. H. Poincare Phys. Theor.
**1974**, A20, 69. [Google Scholar] - Stelle, K.S. Renormalization of higher-derivative quantum gravity. Phys. Rev. D
**1977**, 16, 953. [Google Scholar] [CrossRef] - Barvinsky, A.O.; Blas, D.; Herrero-Valea, M.; Sibiryakov, S.M.; Steinwatchs, C.F. Renormalization of gauge theories in the background-field approach. JHEP
**2018**, 2018, 35. [Google Scholar] [CrossRef] [Green Version] - Stelle, K.S. Classical gravity with higher derivatives. Gen. Rel. Grav.
**1978**, 9, 353. [Google Scholar] [CrossRef] - Larin, S.A. Higher-derivative relativistic quantum gravity. Mod. Phys. Lett.
**2018**, 33, 1850028. [Google Scholar] [CrossRef] [Green Version] - Larin, S.A. Fourth-derivative relativistic quantum gravity. EPJ Web Conf.
**2018**, 191, 07002. [Google Scholar] [CrossRef] - Wilson, K.G.; Fisher, M.E. Critical exponents in 3.99 dimensions. Phys. Rev. Lett.
**1972**, 28, 240. [Google Scholar] [CrossRef] - Veltman, M. Regularization and renormalization of gauge fields. Nucl. Phys. B
**1972**, 44, 189–213. [Google Scholar] [Green Version] - Bollini, C.G.; Giambiagi, J.J. Lowest order “divergent” graphs in v-dimensional space. Phys. Lett. B
**1972**, 40, 566. [Google Scholar] [CrossRef] - Ashmore, J.F. A Method of Gauge Invariant Regularization. Nuovo Cimento Lett.
**1972**, 4, 289. [Google Scholar] [CrossRef] - Cicuta, G.M.; Montaldi, E. Analytic renormalization via continuous space dimension. Nuovo Cimento Lett.
**1972**, 4, 329. [Google Scholar] [CrossRef] - Salvio, A.; Strumia, A. Agravity. JHEP
**2014**, 2014, 80. [Google Scholar] [CrossRef] - Faddeev, L.D.; Popov, V.N. Feynman diagrams for the Yang-Mills field. Phys. Lett. B
**1967**, 25, 30. [Google Scholar] [CrossRef] - Faddeev, L.D.; Slavnov, A.A. Gauge fields. Introduction to quantum theory. Front. Phys.
**1990**, 83, 1. [Google Scholar] [CrossRef] - Pais, A.; Uhlenbeck, G.E. On field theories with non-localized action. Phys. Rev.
**1950**, 79, 145. [Google Scholar] [CrossRef] - Smilga, A. Classical and quantum dynamics of higher-derivative systems. Int. J. Mod. Phys.
**2017**, A32, 1730025. [Google Scholar] [CrossRef] - Bogolubov, N.N.; Shirkov, D.V. Introduction to the Theory of Quantized Fields; Nauka: Moscow, Russia, 1976. [Google Scholar]
- Lee, T.D.; Wick, G.C. Negative metric and the unitarity of the S-matrix. Nucl. Phys. B
**1969**, 9, 209. [Google Scholar] [CrossRef] - Lee, T.D.; Wick, G.C. Unitarity in the Nθθ sector of soluble model with indefinite metric. Nucl. Phys. B
**1969**, 10, 1. [Google Scholar] [CrossRef] - Lee, T.D.; Wick, G.C. Finite Theory of Quantum Electrodynamics. Phys. Rev. D
**1970**, 2, 1033. [Google Scholar] [CrossRef] - Lee, T.D.; Wick, G.C. Questions of Lorentz Invariance in Field Theories With Indefinite Metric. Phys. Rev.
**1971**, D3, 1046. [Google Scholar] [CrossRef] - Cutcosky, R.E.; Landshoff, P.V.; Olive, D.I.; Polkinghome, J.C. A non-analytic S-matrix. Nucl. Phys. B
**1969**, 12, 281–300. [Google Scholar] - Landau, L.D.; Lifshits, E.M. Quantum Mechanics: Non-Relativistic Theory, Course of Theoretical Physics; Pergamon Press: Oxford, UK, 1991; Volume 3. [Google Scholar]

© 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Larin, S.A.
Renormalizable and Unitary Model of Quantum Gravity. *Symmetry* **2019**, *11*, 1334.
https://doi.org/10.3390/sym11111334

**AMA Style**

Larin SA.
Renormalizable and Unitary Model of Quantum Gravity. *Symmetry*. 2019; 11(11):1334.
https://doi.org/10.3390/sym11111334

**Chicago/Turabian Style**

Larin, S. A.
2019. "Renormalizable and Unitary Model of Quantum Gravity" *Symmetry* 11, no. 11: 1334.
https://doi.org/10.3390/sym11111334