A Robust Color Image Watermarking Algorithm Based on APDCBT and SSVD
Abstract
1. Introduction
2. Preliminary Concepts
2.1. APDCBT
2.2. SSVD
2.3. Fibonacci Transform
2.4. QR Code
3. Proposed Color Image Watermarking Algorithm
3.1. Watermark Preprocessing
Algorithm 1.Watermark Preprocessing Algorithm | |
Variable Declaration: | |
SDUW: color watermark image | |
W: read the watermark image | |
RW, GW, and BW: three components of the color watermark image | |
Rs, Gs, and Bs: three scrambled components using Fibonacci transform | |
URs, VRs, UGs, VGs, UBs, and VBs: orthogonal matrices for Rs, Gs, and Bs | |
SRs, SGs, and SBs: singular value matrices for Rs, Gs, and Bs | |
WR, WG, and WB: three watermark components for embedding | |
Watermark Preprocessing Procedure: | |
Start Procedure: | |
1: | Read the color watermark image |
W ← SDUW.png (color watermark image of size 64 × 64); | |
RW ← W (:, :, 1); GW ← W (:, :, 2); BW ← W (:, :, 3); | |
2: | Scramble the three color components of the watermark image |
Rs ← Fibonacci transform (RW); Gs ← Fibonacci transform (GW); Bs ← Fibonacci transform (BW); | |
3: | Perform SVD on each scrambled color components |
[URs, SRs, VRs] ← SVD (Rs); [UGs, SGs, VGs] ← SVD (Gs); [UBs, SBs, VBs] ← SVD (Bs); | |
4: | Obtain watermark for embedding |
WR = URs × SRs; WG = UGs × SGs; WB = UBs × SBs; | |
End Procedure |
3.2. Watermark Embedding
Algorithm 2.Watermark Embedding Algorithm | |
Variable Declaration: | |
Lena: color host image | |
I: read the color host image | |
R, G, and B: three color components of the host image | |
MC: three DC coefficient matrices obtained by APDCBT, where C = {R, G, B} | |
UC and VC: orthogonal matrices for MC | |
SC: singular value matrices for MC | |
WC: three preprocessed color components of the watermark image, where C = {R, G, B} | |
α: scaling factor | |
SCW: three singular value matrices with the embedded watermark | |
UCW and VCW: the orthogonal matrices for SCW | |
SCW1: the singular value matrices for SCW | |
: watermarked DC coefficient matrices | |
: three watermarked color components, including , , and | |
: watermarked image | |
Watermark Embedding Procedure: | |
Start Procedure: | |
1: | Read the color host image |
I ← Lena.ppm (color host image of size 512 × 512); | |
R ← I (:, :, 1); G ← I (:, :, 2); B ← I (:, :, 3); | |
2: | Perform 8 × 8 APDCBT to three color components |
MC ← APDCBT (C) //C = {R, G, B} | |
3: | Perform SVD on MC |
[UC, SC, VC] ← SVD (MC) | |
4: | Watermark Embedding |
SCW = SC + α × WC | |
[UCW, SCW1, VCW] ← SVD (MC) | |
← | |
5: | Perform the inverse APDCBT |
← inverse APDCBT () // | |
← cat (3, ) | |
End Procedure |
3.3. Watermark Extraction
Algorithm 3. Watermark Extraction Algorithm | |
Variable Declaration: | |
: the suspicious color image | |
, , and : three color components of | |
: three DC coefficient matrices obtained by APDCBT, where | |
and : orthogonal matrices for | |
: singular value matrices for | |
SC: saved singular value matrices for MC of host image | |
UCW and VCW: saved orthogonal matrices for SCW in watermark embedding process | |
: watermarked singular value matrices | |
α: scaling factor | |
: extracted watermark | |
: three reconstructed color components of watermark image | |
: three inverse scrambled color components of watermark image | |
: reconstructed watermark image | |
Watermark Embedding Procedure: | |
Start Procedure: | |
1: | Read the suspicious color image |
← Suspicious image.ppm | |
← (:, :, 1); ← (:, :, 2); ← (:, :, 3); | |
2: | Perform 8 × 8 APDCBT to three color components |
← APDCBT (C) // | |
3: | Perform SVD on |
[, , ] ← SVD () | |
4: | Watermark Extraction |
← // | |
← | |
← | |
5: | Apply inverse Fibonacci transform on |
← inverse Fibonacci transform () // | |
6: | Reconstruct the final watermark image |
← cat (3, ) | |
End Procedure |
4. Experimental Results and Analysis
4.1. Evaluation Indexes
4.2. Imperceptibility
4.3. Robustness
4.4. Real-Time Analysis
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Zhang, X.Q.; Wang, X.S. Digital image encryption algorithm based on elliptic curve public cryptosystem. IEEE Access 2018, 6, 70025–70034. [Google Scholar] [CrossRef]
- Denemark, T.; Boroumand, M.; Fridrich, J. Steganalysis features for content-adaptive JPEG steganography. IEEE Trans. Inf. Forensics Secur. 2016, 11, 1736–1746. [Google Scholar] [CrossRef]
- Li, Y.N.; Wang, J.R. Robust content fingerprinting algorithm based on invariant and hierarchical generative model. Digit. Signal Process. 2019, 85, 41–53. [Google Scholar] [CrossRef]
- Schyndel, R.G.V.; Tirkel, A.Z.; Osborne, C.F. A digital watermark. In Proceedings of the 1st IEEE International Conference on Image Processing, Austin, TX, USA, 13–16 November 1994. [Google Scholar]
- Kamaruddin, N.S.; Kamsin, A.; Por, L.Y.; Rahman, H. A review of text watermarking: Theory, methods and applications. IEEE Access 2018, 6, 8011–8028. [Google Scholar] [CrossRef]
- Wang, C.Y.; Zhang, Y.P.; Zhou, X. Robust image watermarking algorithm based on ASIFT against geometric attacks. Appl. Sci. 2018, 8, 410. [Google Scholar] [CrossRef]
- Abdulfetah, A.A.; Sun, X.M.; Yang, H.F.; Mohammad, N. Robust adaptive image watermarking using visual models in DWT and DCT domain. Inf. Technol. J. 2010, 9, 460–466. [Google Scholar] [CrossRef][Green Version]
- Gupta, R.; Mishra, A.; Jain, S. A semi-blind HVS based image watermarking scheme using elliptic curve cryptography. Multimed. Tools Appl. 2018, 77, 19235–19260. [Google Scholar] [CrossRef]
- Erkucuk, S.; Krishnan, S.; Zeytinoglu, M. A robust audio watermark representation based on linear chirps. IEEE Trans. Multimed. 2006, 8, 925–936. [Google Scholar] [CrossRef]
- Mohammed, A.A.; Ali, N.A. Robust video watermarking scheme using high efficiency video coding attack. Multimed. Tools Appl. 2018, 77, 2791–2806. [Google Scholar] [CrossRef]
- Sathya, S.P.A.; Ramakrishnan, S. Fibonacci based key frame selection and scrambling for video watermarking in DWT–SVD domain. Wireless Pers. Commun. 2018, 102, 2011–2031. [Google Scholar] [CrossRef]
- Himeur, Y.; Boukabou, A. A robust and secure key-frames based video watermarking system using chaotic encryption. Multimedia Tools Appl. 2018, 77, 8603–8627. [Google Scholar] [CrossRef]
- Chou, C.H.; Wu, T.L. Embedding color watermarks in color images. EURASIP J. Appl. Signal Process. 2003, 1, 32–40. [Google Scholar] [CrossRef]
- Su, Q.T.; Yuan, Z.H.; Liu, D.C. An approximate Schur decomposition-based spatial domain color image watermarking method. IEEE Access 2019, 7, 4358–4370. [Google Scholar] [CrossRef]
- Su, Q.T.; Liu, D.C.; Yuan, Z.H.; Wang, G.; Zhang, X.F.; Chen, B.J.; Yao, T. New rapid and robust color image watermarking technique in spatial domain. IEEE Access 2019, 7, 30398–30409. [Google Scholar] [CrossRef]
- Barni, M.; Bartolini, F.; Piva, A. Multichannel watermarking of color image. IEEE Trans. Circuits Syst. Video Technol. 2002, 12, 142–156. [Google Scholar] [CrossRef]
- Liu, K.C. Wavelet-based watermarking for color images through visual masking. AEU - Int. J. Electron. Commun. 2010, 64, 112–124. [Google Scholar] [CrossRef]
- Patvardhan, C.; Kumar, P.; Lakshmi, C.V. Effective color image watermarking scheme using YCbCr color space and QR code. Multimed. Tools Appl. 2018, 77, 12655–12677. [Google Scholar] [CrossRef]
- Roy, S.; Pal, A.K. A blind DCT based color watermarking algorithm for embedding multiple watermarks. Aeu-Int. J. Electron. Commun. 2017, 72, 149–161. [Google Scholar] [CrossRef]
- Niu, P.P.; Wang, X.Y.; Liu, Y.N.; Yang, H.Y. A robust color image watermarking using local invariant significant bitplane histogram. Multimed. Tools Appl. 2017, 76, 3403–3433. [Google Scholar]
- Liu, X.Y.; Wang, Y.F.; Du, J.Y.; Liao, S.H.; Lou, J.T.; Zou, B.J. Robust hybrid image watermarking scheme based on KAZE features and IWT-SVD. Multimed. Tools Appl. 2019, 78, 6355–6384. [Google Scholar] [CrossRef]
- Chang, T.J.; Pan, I.H.; Huang, P.S.; Hu, C.H. A robust DCT-2DLDA watermark for color images. Multimed. Tools Appl. 2019, 78, 9169–9191. [Google Scholar] [CrossRef]
- Lakrissi, Y.; Saaidi, A.; Essahlaoui, A. Novel dynamic color image watermarking based on DWT-SVD and the human visual system. Multimed. Tools Appl. 2018, 77, 13531–13555. [Google Scholar] [CrossRef]
- Li, J.Z.; Yu, C.Y.; Gupta, B.B.; Ren, X.C. Color image watermarking scheme based on quaternion Hadamard transform and Schur decomposition. Multimed. Tools Appl. 2018, 77, 4545–4561. [Google Scholar] [CrossRef]
- Rosales-Roldan, L.; Chao, J.H.; Nakano-Miyatake, M.; Perez-Meana, H. Color image ownership protection based on spectral domain watermarking using QR codes and QIM. Multimed. Tools Appl. 2018, 77, 16031–16052. [Google Scholar] [CrossRef]
- Roy, S.; Pal, A.K. A hybrid domain color image watermarking based on DWT-SVD. Iran. J. Sci. Technol.-Trans. Electr. Eng. 2019, 43, 201–217. [Google Scholar] [CrossRef]
- Vaidya, P.S.; Mouli, C.P.V.S.S.R. A robust semi-blind watermarking for color images based on multiple decompositions. Multimed. Tools Appl. 2017, 76, 25623–25656. [Google Scholar]
- Mohammad, M.; Gholamhossein, E. A new DCT-based robust image watermarking method using teaching-learning-based optimization. J. Inf. Secur. Appl. 2019, 47, 28–38. [Google Scholar]
- Laur, L.; Rasti, P.; Agoyi, M.; Anbarjafari, G. A robust color image watermarking scheme using entropy and QR decomposition. Radio Eng. 2015, 24, 1025–1032. [Google Scholar] [CrossRef]
- Cedillo-Hernandez, M.; Cedillo-Hernandez, A.; Garcia-Ugalde, F.J.; Nakano-Miyatake, M.; Perez-Meana, H. Copyright protection of color imaging using robust-encoded watermarking. Radio Eng. 2015, 24, 240–251. [Google Scholar] [CrossRef]
- Su, Q.T.; Wang, G.; Jia, S.L.; Zhang, X.F.; Liu, Q.M.; Liu, X.X. Embedding color image watermark in color image based on two-level DCT. Signal Image Video Process. 2015, 9, 991–1007. [Google Scholar] [CrossRef]
- Su, Q.T.; Chen, B.J. An improved color image watermarking scheme based on Schur decomposition. Multimed. Tools Appl. 2017, 76, 24221–24249. [Google Scholar] [CrossRef]
- Pandey, M.K.; Parmar, G.; Gupta, R.; Sikander, A. Non-blind Arnold scrambled hybrid image watermarking in YCbCr color space. Microsyst. Technol. 2019, 25, 3071–3081. [Google Scholar] [CrossRef]
- Jia, S.L.; Zhou, Q.P.; Zou, H. A novel color image watermarking scheme based on DWT and QR decomposition. J. Appl. Sci. Eng. 2017, 20, 193–200. [Google Scholar]
- Hou, Z.X.; Wang, C.Y.; Yang, A.P. All phase biorthogonal transform and its application in JPEG-like image compression. Signal Process. Image Commun. 2009, 24, 791–802. [Google Scholar] [CrossRef]
- Zhou, X.; Zhang, H.; Wang, C.Y. A robust image watermarking technique based on DWT, APDCBT, and SVD. Symmetry 2018, 10, 77. [Google Scholar] [CrossRef]
- Zhang, Z.; Wang, C.Y.; Zhou, X. Image watermarking scheme based on DWT-DCT and SSVD. Int. J. Secur. Its Appl. 2016, 10, 191–205. [Google Scholar]
- Cai, Y.J.; Niu, Y.G.; Su, Q.T. Blind watermarking algorithm for color images based on DWT-SVD and Fibonacci transformation. Appl. Res. Comput. 2012, 29, 3025–3028. [Google Scholar]
- University of Granada, Computer Vision Group: CVG-UGR Image Database. Available online: http://decsai.ugr.es/cvg/dbimagenes/c512.php (accessed on 12 July 2019).
- Scholar Homepage of Chengyou Wang. Available online: http://www.scholat.com/wangchengyou (accessed on 15 July 2019).
- Ladislav, P.; Jan, K.; Ondrej, Z.; Ondrej, K.; Libor, B.; Martin, S.; Tomas, K. Study of advanced compression tools for stereoscopic video by objective metrics. In Proceedings of the 26th International Conference Radioelektronika, Kosice, Slovakia, 19–20 April 2016. [Google Scholar]
Size of Image | 4 × 4 | 8 × 8 | 16 × 16 | 32 × 32 | 64 × 64 | 128 × 128 | 256 × 256 |
Period | 6 | 12 | 24 | 48 | 96 | 192 | 384 |
Host Images | Logo | SDUW | QR Code | |||||||
---|---|---|---|---|---|---|---|---|---|---|
PSNR (dB) | SSIM | NCC | PSNR (dB) | SSIM | NCC | PSNR (dB) | SSIM | NCC | ||
Baboon | 1 | 55.90 | 1.0000 | 0.9992 | 55.49 | 1.0000 | 0.9993 | 56.88 | 1.0000 | 0.9980 |
3 | 47.88 | 0.9998 | 1.0000 | 48.25 | 0.9998 | 1.0000 | 49.20 | 0.9998 | 1.0000 | |
5 | 44.84 | 0.9992 | 1.0000 | 46.53 | 0.9995 | 1.0000 | 46.78 | 0.9995 | 1.0000 | |
7 | 42.91 | 0.9982 | 1.0000 | 45.97 | 0.9988 | 1.0000 | 45.80 | 0.9989 | 1.0000 | |
Airplane | 1 | 55.69 | 0.9997 | 0.9979 | 55.20 | 0.9998 | 0.9986 | 56.63 | 0.9998 | 0.9965 |
3 | 47.17 | 0.9979 | 1.0000 | 47.15 | 0.9984 | 1.0000 | 48.32 | 0.9984 | 1.0000 | |
5 | 43.63 | 0.9942 | 1.0000 | 44.34 | 0.9955 | 1.0000 | 45.15 | 0.9960 | 1.0000 | |
7 | 41.43 | 0.9877 | 1.0000 | 43.11 | 0.9914 | 1.0000 | 43.40 | 0.9922 | 1.0000 | |
Sailboat | 1 | 55.98 | 0.9999 | 0.9995 | 55.46 | 0.9999 | 0.9998 | 56.85 | 0.9999 | 0.9992 |
3 | 48.09 | 0.9993 | 1.0000 | 48.18 | 0.9994 | 1.0000 | 49.09 | 0.9995 | 1.0000 | |
5 | 45.43 | 0.9979 | 1.0000 | 46.52 | 0.9986 | 1.0000 | 46.62 | 0.9985 | 1.0000 | |
7 | 44.10 | 0.9960 | 1.0000 | 46.56 | 0.9973 | 1.0000 | 45.78 | 0.9970 | 1.0000 | |
House | 1 | 55.78 | 0.9997 | 0.9991 | 55.29 | 0.9998 | 0.9995 | 56.71 | 0.9998 | 0.9975 |
3 | 47.49 | 0.9972 | 1.0000 | 47.57 | 0.9984 | 1.0000 | 48.60 | 0.9985 | 1.0000 | |
5 | 44.25 | 0.9934 | 1.0000 | 45.22 | 0.9963 | 1.0000 | 45.73 | 0.9965 | 1.0000 | |
7 | 42.33 | 0.9879 | 1.0000 | 44.45 | 0.9932 | 1.0000 | 44.36 | 0.9936 | 1.0000 | |
Peppers | 1 | 56.13 | 0.9826 | 0.9984 | 55.79 | 0.9844 | 0.9990 | 57.16 | 0.9843 | 0.9977 |
3 | 48.80 | 0.9729 | 1.0000 | 49.70 | 0.9793 | 1.0000 | 50.36 | 0.9775 | 1.0000 | |
5 | 46.34 | 0.9685 | 1.0000 | 48.89 | 0.9808 | 1.0000 | 49.07 | 0.9777 | 1.0000 | |
7 | 44.13 | 0.9662 | 1.0000 | 46.06 | 0.9824 | 1.0000 | 46.21 | 0.9806 | 1.0000 |
Watermarks | Logo | SDUW | QR Code |
---|---|---|---|
Watermarked images (PSNR (dB)/SSIM) | 45.24/0.9982 | 47.66/0.9986 | 47.70/0.9982 |
Extracted watermarks (NCC) | 1.0000 | 1.0000 | 1.0000 |
Watermarked images (PSNR (dB)/SSIM) | 44.84/0.9992 | 46.53/0.9995 | 46.78/0.9995 |
Extracted watermarks (NCC) | 1.0000 | 1.0000 | 1.0000 |
Algorithms | Patvardhan et al. [18] | Su et al. [31] | Jia et al. [34] | Proposed |
---|---|---|---|---|
Host images | 512 × 512 × 3 | 512 × 512 × 3 | 512 × 512 × 3 | 512 × 512 × 3 |
Watermark images | gray | color | color | color |
PSNR (dB) | 52.13 | 46.07 | 41.45 | 49.03 |
SSIM | 0.9975 | 0.9913 | 0.9842 | 0.9992 |
NCC | 0.9962 | 0.9999 | 1.0000 | 1.0000 |
Capacity | 128 × 128 | 64 × 64 × 3 | 32 × 32 × 3 | 64 × 64 × 3 |
Attacks | Parameter | Lena | Baboon | Sailboat |
---|---|---|---|---|
JPEG | QF = 30 | 0.9999 | 0.9999 | 0.9998 |
QF = 60 | 1.0000 | 1.0000 | 1.0000 | |
Gaussian noise | 0.01 | 0.9997 | 0.9998 | 0.9997 |
0.02 | 0.9986 | 0.9994 | 0.9990 | |
Salt and Pepper noise | 0.01 | 0.9998 | 0.9999 | 0.9999 |
0.02 | 0.9995 | 0.9998 | 0.9997 | |
Average filter | 5 × 5 | 0.9991 | 0.9988 | 0.9984 |
Median filter | 5 × 5 | 0.9999 | 0.9988 | 0.9995 |
Gaussian filter | 5 × 5 | 1.0000 | 1.0000 | 1.0000 |
Sharpening | 0.2 | 0.9977 | 0.9971 | 0.9974 |
Rotation | 0.9922 | 0.9905 | 0.9941 | |
Scaling | 0.5 | 1.0000 | 1.0000 | 1.0000 |
Attacks | Parameter | Lena | Baboon | Sailboat |
---|---|---|---|---|
JPEG | QF = 30 | 0.9997 | 0.9998 | 0.9996 |
QF = 60 | 0.9999 | 0.9999 | 0.9999 | |
Gaussian noise | 0.01 | 0.9991 | 0.9994 | 0.9994 |
0.02 | 0.9966 | 0.9979 | 0.9978 | |
Salt and Pepper noise | 0.01 | 0.9996 | 0.9998 | 0.9999 |
0.02 | 0.9986 | 0.9993 | 0.9991 | |
Average filter | 5 × 5 | 0.9978 | 0.9971 | 0.9963 |
Median filter | 5 × 5 | 0.9996 | 0.9972 | 0.9988 |
Gaussian filter | 5 × 5 | 1.0000 | 0.9999 | 0.9999 |
Sharpening | 0.2 | 0.9955 | 0.9932 | 0.9941 |
Rotation | 0.9886 | 0.9855 | 0.9900 | |
Scaling | 0.5 | 1.0000 | 1.0000 | 1.0000 |
Attacks | Patvardhan et al. [18] | Su et al. [31] | Jia et al. [34] | Proposed |
---|---|---|---|---|
Gaussian noise (0.02) | 0.8104 | 0.8300 | 0.8848 | 0.9966 |
Salt and Pepper noise (0.02) | 0.9335 | 0.9024 | 0.9676 | 0.9986 |
Average filter (3 × 3) | 0.9910 | 0.8662 | 0.9485 | 0.9996 |
Median filter (3 × 3) | 0.9958 | 0.8697 | 0.9622 | 0.9999 |
Gaussian filter (3 × 3) | 0.9960 | 0.9449 | 0.9602 | 1.0000 |
JPEG (30) | 0.9953 | 0.8437 | 0.8831 | 0.9997 |
Sharpening (0.2) | 0.7964 | 0.8406 | 0.8943 | 0.9955 |
Rotation () | 0.9940 | 0.9666 | 0.8709 | 0.9886 |
Scaling (2) | 0.9961 | 0.9901 | 0.9997 | 1.0000 |
Gaussian noise (0.02) + Average filter (3 × 3) | 0.9951 | 0.8406 | 0.8724 | 0.9964 |
Salt and Pepper noise (0.05) + Median filter (5 × 5) | 0.9937 | 0.8453 | 0.9202 | 0.9995 |
Gaussian noise (0.02) + JPEG (30) | 0.8157 | 0.8394 | 0.8785 | 0.9963 |
Salt and Pepper noise (0.05) + JPEG (50) | 0.8402 | 0.8432 | 0.8923 | 0.9934 |
Average filter (3 × 3) + JPEG (30) | 0.9910 | 0.8413 | 0.8801 | 0.9995 |
Median filter (3 × 3) + JPEG (70) | 0.9950 | 0.8405 | 0.9062 | 0.9999 |
Gaussian noise (0.02) + Scaling (0.5) | 0.9907 | 0.8389 | 0.8821 | 0.9967 |
Salt and Pepper noise (0.05) + Scaling (2) | 0.9639 | 0.8580 | 0.9668 | 0.9938 |
Average filter (5 × 5) + Scaling (0.5) | 0.9883 | 0.8366 | 0.9002 | 0.9977 |
Median filter (5 × 5) + Scaling (2) | 0.9917 | 0.8826 | 0.9260 | 0.9996 |
JPEG (30) + Scaling (0.5) | 0.9895 | 0.8424 | 0.8822 | 0.9998 |
JPEG (50) + Sharpening (0.2) | 0.9394 | 0.8462 | 0.8801 | 0.9969 |
JPEG (70) + Rotation () | 0.9964 | 0.8326 | 0.8677 | 0.9885 |
Scaling (2) + Sharpening (0.2) | 0.9275 | 0.8306 | 0.9000 | 0.9959 |
Gaussian noise (0.02) + Median filter (3 × 3) + Sharpening (0.2) | 0.8190 | 0.8320 | 0.8777 | 0.9925 |
Salt and Pepper noise (0.05) + Average filter (3 × 3) + Scaling (0.5) | 0.9889 | 0.8306 | 0.8849 | 0.9936 |
Average filter (5 × 5) + Scaling (0.5) + JPEG (30) | 0.9883 | 0.8402 | 0.8771 | 0.9980 |
Scaling (2) + Rotation () + Gaussian filter (3 × 3) | 0.9957 | 0.8339 | 0.9496 | 0.9960 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, X.; Wang, C.; Zhou, X. A Robust Color Image Watermarking Algorithm Based on APDCBT and SSVD. Symmetry 2019, 11, 1227. https://doi.org/10.3390/sym11101227
Yu X, Wang C, Zhou X. A Robust Color Image Watermarking Algorithm Based on APDCBT and SSVD. Symmetry. 2019; 11(10):1227. https://doi.org/10.3390/sym11101227
Chicago/Turabian StyleYu, Xiaoyan, Chengyou Wang, and Xiao Zhou. 2019. "A Robust Color Image Watermarking Algorithm Based on APDCBT and SSVD" Symmetry 11, no. 10: 1227. https://doi.org/10.3390/sym11101227
APA StyleYu, X., Wang, C., & Zhou, X. (2019). A Robust Color Image Watermarking Algorithm Based on APDCBT and SSVD. Symmetry, 11(10), 1227. https://doi.org/10.3390/sym11101227