# Decaying Dark Energy in Light of the Latest Cosmological Dataset

## Abstract

**:**

## 1. Introduction

## 2. Theoretical Framework

## 3. Methodology and Data

#### 3.1. Supernovae Type Ia

#### 3.2. Differential Ages, $H\left(z\right)$

#### 3.3. Baryonic Acoustic Oscillation

#### 3.4. Gamma Ray Burst

#### 3.5. ${T}_{CMB}$–Redshift Relation

#### 3.6. PlanckTT + LowP

## 4. Results and Discussions

## 5. Conclusions

## Funding

## Acknowledgments

## Conflicts of Interest

## Abbreviations

BAO | Baryon Acoustic Oscillation |

DE | Dark Energy |

DM | Dark Matter |

FRW | Friedman–Robertson–Walker |

GR | General Relativity |

GRB | Gamma Ray Burst |

MCMC | Monte Carlo Markov Chain |

SNIa | Supernovae Type Ia |

SPT | South Pole Telescope |

## References

- Perlmutter, S.; Gabi, S.; Goldhaber, G.; Goobar, A.; Groom, D.E.; Hook, I.M.; Kim, A.G.; Kim, M.Y.; Lee, J.C.; Pain, R.; et al. Measurements of the Cosmological Parameters Omega and Lambda from the First Seven Supernovae at z ≥ 0.35. Astrophys. J.
**1997**, 483, 565. [Google Scholar] [CrossRef] - Riess, A.G.; Strolger, L.G.; Tonry, J.; Casertano, S.; Ferguson, H.C.; Mobasher, B.; Challis, P.; Filippenko, A.V.; Jha, S.; Li, W.; et al. Type Ia Supernova Discoveries at z > 1 from the Hubble Space Telescope: Evidence for Past Deceleration and Constraints on Dark Energy Evolution. Astrophys. J.
**2004**, 607, 665–687. [Google Scholar] [CrossRef] - Astier, P.; Guy, J.; Regnault, N.; Pain, R.; Aubourg, E.; Balam, D.; Basa, S.; Carlberg, R.G.; Fabbro, S.; Fouchez, D.; et al. The Supernova Legacy Survey: Measurement of Ω
_{M}, Ω_{Λ}and w from the first year data set. Astron. Astrophys.**2006**, 447, 31–48. [Google Scholar] [CrossRef] - Suzuki, N.; Rubin, D.; Lidman, C.; Aldering, G.; Amanullah, R.; Barbary, K.; Barrientos, L.F.; Botyanszki, J.; Brodwin, M.; Connolly, N.; et al. The Hubble Space Telescope Cluster Supernova Survey. V. Improving the Dark-energy Constraints above z > 1 and Building an Early-type-hosted Supernova Sample. Astrophys. J.
**2012**, 746, 85. [Google Scholar] [CrossRef] - Pope, A.C.; Matsubara, T.; Szalay, A.S.; Blanton, M.R.; Eisenstein, D.J.; Gray, J.; Jain, B.; Bahcall, N.A.; Brinkmann, J.; Budavari, T.; et al. Cosmological Parameters from Eigenmode Analysis of Sloan Digital Sky Survey Galaxy Redshifts. Astrophys. J.
**2004**, 607, 655. [Google Scholar] [CrossRef] - Percival, W.J.; Baugh, C.M.; Bland-Hawthorn, J.; Bridges, T.; Cannon, R.; Cole, S.; Colless, M.; Collins, C.; Couch, W.; Dalton, G.; et al. The 2dF Galaxy Redshift Survey: The power spectrum and the matter content of the Universe. Mon. Not. R. Astron. Soc.
**2001**, 327, 1297–1306. [Google Scholar] [CrossRef] - Tegmark, M.; Blanton, M.R.; Strauss, M.A.; Hoyle, F.; Schlegel, D.; Scoccimarro, R.; Vogeley, M.S.; Weinberg, D.H.; Zehavi, I.; Berlind, M.S.; et al. The Three-Dimensional Power Spectrum of Galaxies from the Sloan Digital Sky Survey. Astrophys. J.
**2004**, 606, 702. [Google Scholar] [CrossRef] - Hinshaw, G.; Larson, D.; Komatsu, E.; Spergel, D.N.; Bennett, C.L.; Dunkley, J.; Nolta, M.R.; Halpern, M.; Hill, R.S.; Odegard, N.; et al. Nine-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Cosmological Parameter Results. Astrophys. J. Suppl. Ser.
**2013**, 208, 19. [Google Scholar] [CrossRef] - Blake, C.; Kazin, E.A.; Beutler, F.; Davis, T.M.; Parkinson, D.; Brough, S.; Colless, M.; Contreras, C.; Couch, W.; Croom, S.; et al. The WiggleZ Dark Energy Survey: Mapping the distance-redshift relation with baryon acoustic oscillations. Mon. Not. R. Astron. Soc.
**2011**, 418, 1707. [Google Scholar] [CrossRef] - Planck Collaboration. Planck 2018 results. VI. Cosmological parameters. arXiv, 2018; arXiv:1807.06209. [Google Scholar]
- de Martino, I.; Génova-Santos, R.; Atrio-Barandela, F.; Ebeling, H.; Kashlinsky, A.; Kocevski, D.; Martins, C.J.A.P. Constraining the Redshift Evolution of the Cosmic Microwave Background Blackbody Temperature with PLANCK Data. Astrophys. J.
**2015**, 808, 128. [Google Scholar] [CrossRef] - De Martino, I.; Martins, C.J.A.P.; Ebeling, H.; Kocevski, D. Constraining spatial variations of the fine structure constant using clusters of galaxies and Planck data. Phys. Rev. D
**2016**, 94, 083008. [Google Scholar] [CrossRef] [Green Version] - Peebles, P.J.E.; Ratra, B. Cosmology with a time-variable cosmological ’constant’. Astrophys. J. Lett.
**1988**, 325, L17. [Google Scholar] [CrossRef] - Ratra, B.; Peebles, P.J.E. Cosmological consequences of a rolling homogeneous scalar field. Phys. Rev. D
**1988**, 37, 3406. [Google Scholar] [CrossRef] - Sahni, V.; Starobinsky, A.A. The Case for a Positive Cosmological Λ-Term. Int. J. Mod. Phys.
**2000**, D9, 373. [Google Scholar] [CrossRef] - Caldwell, R.R. A phantom menace? Cosmological consequences of a dark energy component with super-negative equation of state. Phys. Lett. B
**2002**, 545, 23. [Google Scholar] [CrossRef] - Padmanabhan, T. Cosmological constant-the weight of the vacuum. Phys. Rep.
**2003**, 380, 235. [Google Scholar] [CrossRef] - Peebles, P.J.E.; Ratra, B. The cosmological constant and dark energy. Rev. Mod. Phys.
**2003**, 75, 559. [Google Scholar] [CrossRef] - Demianski, M.; Piedipalumbo, E.; Rubano, C.; Tortora, C. Two viable quintessence models of the Universe: Confrontation of theoretical predictions with observational data. Astron. Astrophys.
**2005**, 431, 27. [Google Scholar] [CrossRef] - Cardone, V.F.; Tortora, C.; Troisi, A.; Capozziello, S. Beyond the perfect fluid hypothesis for the dark energy equation of state. Phys. Rev. D
**2006**, 73, 043508. [Google Scholar] [CrossRef] - Capolupo, A. Dark matter and dark energy induced by condensates. Adv. High Energy Phys.
**2016**, 2016. [Google Scholar] [CrossRef] - Capolupo, A. Quantum vacuum, dark matter, dark energy and spontaneous supersymmetry breaking. Adv. High Energy Phys.
**2018**, 2018. [Google Scholar] [CrossRef] - Kleidis, K.; Spyrou, N.K. A conventional approach to the dark energy concept. Astron. Astrophys.
**2011**, 529, A26. [Google Scholar] [CrossRef] - Kleidis, K.; Spyrou, N.K. A conventional form of dark energy. J. Phys. Conf. Ser.
**2011**, 283, 012018. [Google Scholar] [CrossRef] [Green Version] - Kleidis, K.; Spyrou, N.K. Polytropic dark matter flows illuminate dark energy and accelerated expansion. Astron. Astrophys.
**2015**, 576, A23. [Google Scholar] [CrossRef] - Kleidis, K.; Spyrou, N.K. Dark energy: The shadowy reflection of dark matter? Entropy
**2016**, 18, 94. [Google Scholar] [CrossRef] - Kleidis, K.; Spyrou, N.K. Cosmological perturbations in the ΛCDM-like limit of a polytropic dark matter model. Astron. Astrophys.
**2017**, 606, A116. [Google Scholar] [CrossRef] - Caldwell, R.; Kamionkowski, M. The Physics of Cosmic Acceleration. Ann. Rev. Nuclear Part. Sci.
**2009**, 59, 397. [Google Scholar] [CrossRef] - Wang, B.; Abdalla, E.; Atrio-Barandela, F.; Pavón, D. Dark Matter and Dark Energy Interactions: Theoretical Challenges, Cosmological Implications and Observational Signatures. Rep. Prog. Phys.
**2016**, 79, 9. [Google Scholar] [CrossRef] [PubMed] - Capozziello, S.; de Laurentis, M.; Francaviglia, M.; Mercadante, S. From Dark Energy & Dark Matter to Dark Metric. Found. Phys.
**2009**, 39, 1161. [Google Scholar] - Nojiri, S.; Odintsov, S.D. Unified cosmic history in modified gravity: From F(R) theory to Lorentz non-invariant models. Phys. Rep.
**2011**, 505, 59–144. [Google Scholar] [CrossRef] - de Martino, I.; De Laurentis, M.; Capozziello, S. Constraining f(R) gravity by the Large Scale Structure. Universe
**2015**, 1, 123. [Google Scholar] [CrossRef] - Nojiri, S.; Odintsov, S.D.; Oikonomou, V.K. Modified gravity theories on a nutshell: Inflation, bounce and late-time evolution. Phys. Rep.
**2017**, 692, 1–104. [Google Scholar] [CrossRef] [Green Version] - Nojiri, S.; Odintsov, S.D. Introduction to modified gravity and gravitational alternative for dark energy. Int. J. Geom. Meth. Mod. Phys.
**2007**, 4, 115. [Google Scholar] [CrossRef] - Capozziello, S.; De Laurentis, M. Extended Theories of Gravity. Phys. Rep.
**2011**, 509, 167. [Google Scholar] [CrossRef] - Arraut, I. The graviton Higgs mechanism. Europhys. Letter
**2015**, 111, 61001. [Google Scholar] [CrossRef] [Green Version] - Arraut, I.; Chelabi, K. Non-linear massive gravity as a gravitational σ-model. Europhys. Letter
**2016**, 115, 31001. [Google Scholar] [CrossRef] - Arraut, I.; Chelabi, K. Vacuum degeneracy in massive gravity: Multiplicity of fundamental scales. Mod. Phys. Lett. A
**2017**, 32, 1750112. [Google Scholar] [CrossRef] [Green Version] - Lima, J.A.S. Thermodynamics of decaying vacuum cosmologies. Phys. Rev. D
**1996**, 54, 2571. [Google Scholar] [CrossRef] - Lima, J.A.S.; Alcaniz, J.A.S. Flat Friedmann-Robertson-Walker cosmologies with adiabatic matter creation: kinematic tests. Astron. Astrophys.
**1999**, 348, 1. [Google Scholar] - Lima, J.A.S.; Silva, A.I.; Viegas, S.M. Is the radiation temperature-redshift relation of the standard cosmology in accordance with the data? Mon. Not. R. Astron. Soc.
**2000**, 312, 747. [Google Scholar] [CrossRef] - Puy, D. Thermal balance in decaying Λ cosmologies. Astron. Astrophys.
**2004**, 422, 1–9. [Google Scholar] [CrossRef] - Ma, Y. Variable cosmological constant model: The reconstruction equations and constraints from current observational data. Nuclear Phys. B
**2008**, 804, 262. [Google Scholar] [CrossRef] - Jetzer, P.; Puy, D.; Signore, M.; Tortora, C. Limits on decaying dark energy density models from the CMB temperature-redshift relation. Gen. Relat. Grav.
**2011**, 43, 1083. [Google Scholar] [CrossRef] [Green Version] - Jetzer, P.; Tortora, C. Constraints from the CMB temperature and other common observational data sets on variable dark energy density models. Phys. Rev. D
**2011**, 84, 043517. [Google Scholar] [CrossRef] - Fixsen, D.J. The Temperature of the Cosmic Microwave Background. Astrophys. J.
**2009**, 707, 916. [Google Scholar] [CrossRef] - Bahcall, J.N.; Wolf, R.A. Fine-Structure Transitions. Astrophys. J.
**1968**, 152, 701. [Google Scholar] [CrossRef] - Fabbri, R.; Melchiorri, F.; Natale, V. The Sunyaev-Zel’dovich effect in the millimetric region. Astrophys. Space Sci.
**1978**, 59, 223. [Google Scholar] [CrossRef] - Rephaeli, Y. On the determination of the degree of cosmological Compton distortions and the temperature of the cosmic blackbody radiation. Astrophys. J.
**1980**, 241, 858. [Google Scholar] [CrossRef] - Sunyaev, R.A.; Zeldovich, Y.B. The Observations of Relic Radiation as a Test of the Nature of X-Ray Radiation from the Clusters of Galaxies. Comment Astrophys. Space Phys.
**1972**, 4, 173. [Google Scholar] - Avgoustidis, A.; Génova-Santos, R.T.; Luzzi, G.; Martins, C.J.A.P. Subpercent constraints on the cosmological temperature evolution. Phys. Rev. D
**2016**, 93, 043521. [Google Scholar] [CrossRef] [Green Version] - Luzzi, G.; Shimon, M.; Lamagna, L.; Rephaeli, Y.; De Petris, M.; Conte, A.; De Gregori, S.; Battistelli, E.S. Redshift Dependence of the Cosmic Microwave Background Temperature from Sunyaev-Zeldovich Measurements. Astrophys. J.
**2009**, 705, 1122. [Google Scholar] [CrossRef] - Luzzi, G.; Génova-Santos, R.T.; Martins, C.J.A.P.; De Petris, M.; Lamagna, L. Constraining the evolution of the CMB temperature with SZ measurements from Planck data. J. Cosmol. Astropart. Phys.
**2015**, 1509, 011. [Google Scholar] [CrossRef] - Hurier, G.; Aghanim, N.; Douspis, M.; Pointecouteau, E. Measurement of the T
_{CMB}evolution from the Sunyaev-Zel’dovich effect. Astron. Astrophys.**2014**, 561, A143. [Google Scholar] [CrossRef] - Saro, A.; Liu, J.; Mohr, J.J.; Aird, K.A.; Ashby, M.L.N.; Bayliss, M.; Benson, B.A.; Bleem, L.E.; Bocquet, S.; Brodwin, M.; et al. Constraints on the CMB temperature evolution using multiband measurements of the Sunyaev-Zel’dovich effect with the South Pole Telescope. Mon. Not. R. Astron. Soc.
**2014**, 440, 2610. [Google Scholar] [CrossRef] - De Martino, I.; Atrio-Barandela, F.; da Silva, A.; Ebeling, H.; Kashlinsky, A.; Kocevski, D.; Martins, C.J.A.P. Measuring the Redshift Dependence of the Cosmic Microwave Background Monopole Temperature with Planck Data. Astrophys. J.
**2012**, 757, 144. [Google Scholar] [CrossRef] - Weinberg, S. Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity; Wiley: New York, NY, USA, 1972. [Google Scholar]
- Hastings, W.K. Monte Carlo Sampling Methods using Markov Chains and their Applications. Biometrika
**1970**, 57, 97. [Google Scholar] [CrossRef] - Metropolis, N.; Rosenbluth, A.W.; Rosenbluth, M.N.; Teller, A.H.; Teller, E. Equation of State Calculations by Fast Computing Machines. J. Chem. Phys.
**1953**, 21, 1087. [Google Scholar] [CrossRef] - Gelman, A.; Roberts, G.O.; Gilks, W.R. Efficient Metropolis jumping rule. Bayesian Stat.
**1996**, 5, 599. [Google Scholar] - Roberts, G.O.; Gelman, A.; Gilks, W.R. Weak convergence and optimal scaling of random walk Metropolis algorithms. Ann. Appl. Probab.
**1997**, 7, 110. [Google Scholar] [CrossRef] - Gelman, A.; Rubin, D.B. Inference from Iterative Simulation Using Multiple Sequences. Stat. Sci.
**1992**, 7, 457. [Google Scholar] [CrossRef] - Spergel, D.N.; Verde, L.; Peiris, H.V.; Komatsu, E.; Nolta, M.R.; Bennett, C.L.; Halpern, M.; Hinshaw, G.; Jarosik, N.; Kogut, A.; et al. First-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Determination of Cosmological Parameters. Astrophys. J. Suppl.
**2003**, 148, 175. [Google Scholar] [CrossRef] - Akaike, H. A new look at the statistical model identification. IEEE Trans. Autom. Control
**1974**, 19, 716. [Google Scholar] [CrossRef] - Amanullah, R.; Lidman, C.; Rubin, D.; Aldering, G.; Astier, P.; Barbary, K.; Burns, M.S.; Conley, A.; Dawson, K.S.; Deustua, S.E.; et al. Spectra and Hubble Space Telescope Light Curves of Six Type Ia Supernovae at 0.511 < z < 1.12 and the Union2 Compilation. Astrophys. J.
**2010**, 716, 712. [Google Scholar] - Di Pietro, E.; Claeskens, J.F. Future supernovae data and quintessence models. Mon. Not. R. Astron. Soc.
**2003**, 341, 1299. [Google Scholar] [CrossRef] - Nesseris, S.; Perivolaropoulos, L. Comparison of the Legacy and Gold SnIa Dataset Constraints on Dark Energy Models. Phys. Rev. D
**2005**, 72, 123519. [Google Scholar] [CrossRef] - Perivolaropoulos, L. Constraints on linear negative potentials in quintessence and phantom models from recent supernova data. Phys. Rev. D
**2005**, 71, 063503. [Google Scholar] [CrossRef] - Wei, H. Constraints on linear negative potentials in quintessence and phantom models from recent supernova data. Phys. Lett. B
**2010**, 687, 286. [Google Scholar] [CrossRef] - Luković, V.V.; D’Agostino, R.; Vittorio, N. Is there a concordance value for H
_{0}? Astron. Astrophys.**2016**, 595, A109. [Google Scholar] [CrossRef] - Jimenez, R.; Loeb, A. Constraining Cosmological Parameters Based on Relative Galaxy Ages. Astrophys. J.
**2005**, 573, 37. [Google Scholar] [CrossRef] - Simon, J.; Verde, L.; Jimenez, R. Constraints on the redshift dependence of the dark energy potential. Phys. Rev. D
**2005**, 71, 123001. [Google Scholar] [CrossRef] - Stern, D.; Jimenez, R.; Verde, L.; Stanford, S.A.; Kamionkowski, M. Cosmic Chronometers: Constraining the Equation of State of Dark Energy. II. A Spectroscopic Catalog of Red Galaxies in Galaxy Clusters. Astrophys. J. Suppl.
**2010**, 188, 280. [Google Scholar] [CrossRef] - Zhang, C.; Zhang, H.; Yuan, S.; Liu, S.; Zhang, T.J.; Sun, Y.C. Four new observational H(z) data from luminous red galaxies in the Sloan Digital Sky Survey data release seven. Res. Astron. Astrophys.
**2014**, 14, 1221. [Google Scholar] [CrossRef] - Moresco, M. Raising the bar: New constraints on the Hubble parameter with cosmic chronometers at z∼2. Mon. Not. R. Astron. Soc.
**2015**, 450, L16. [Google Scholar] [CrossRef] - Moresco, M.; Cimatti, A.; Jimenez, R.; Pozzetti, L.; Zamorani, G.; Bolzonella, M.; Dunlop, J.; Lamareille, F.; Mignoli, M.; Pearce, H.; et al. Improved constraints on the expansion rate of the Universe up to z∼1.1 from the spectroscopic evolution of cosmic chronometers. J. Cosmol. Astropart. Phys.
**2012**, 2012, 1112–1119. [Google Scholar] [CrossRef] - Moresco, M.; Pozzetti, L.; Cimatti, A.; Jimenez, R.; Maraston, C.; Verde, L.; Thomas, D.; Citro, A.; Tojeiro, R.; Wilkinson, D. A 6% measurement of the Hubble parameter at z∼0.45: Direct evidence of the epoch of cosmic re-acceleration. J. Cosmol. Astropart. Phys.
**2016**, 2016, 014. [Google Scholar] [CrossRef] - Moresco, M.; Verde, L.; Pozzetti, L.; Jimenez, R.; Cimatti, A. New constraints on cosmological parameters and neutrino properties using the expansion rate of the Universe to z∼1.75. J. Cosmol. Astropart. Phys.
**2012**, 2012, 053. [Google Scholar] [CrossRef] - Eisenstein, D.J.; Hu, W.; Tegmark, M. Cosmic Complementarity: H
_{0}and Ω_{m}from Combining Cosmic Microwave Background Experiments and Redshift Surveys. Astrophys. J. Lett.**1998**, 504, L57. [Google Scholar] [CrossRef] - Eisenstein, D.J.; Zehavi, I.; Hogg, D.W.; Scoccimarro, R.; Blanton, M.R.; Nichol, R.C.; Scranton, R.; Seo, H.; Tegmark, M.; Zheng, Z.; et al. Detection of the Baryon Acoustic Peak in the Large-Scale Correlation Function of SDSS Luminous Red Galaxies. Astrophys. J.
**2005**, 633, 560. [Google Scholar] [CrossRef] - Beutler, F.; Blake, C.; Colless, M.; Jones, D.H.; Staveley-Smith, L.; Campbell, L.; Parker, Q.; Saunders, W.; Watson, F. The 6dF Galaxy Survey: baryon acoustic oscillations and the local Hubble constant. Mon. Not. R. Astron. Soc.
**2011**, 416, 3017. [Google Scholar] [CrossRef] - Ross, A.J.; Samushia, L.; Howlett, C.; Percival, W.J.; Burden, A.; Manera, M. The clustering of the SDSS DR7 main Galaxy sample - I. A 4 per cent distance measure at z = 0.15. Mon. Not. R. Astron. Soc.
**2015**, 449, 835. [Google Scholar] [CrossRef] - Anderson, L.; Aubourg, E.; Bailey, S.; Beutler, F.; Bhardwaj, V.; Blanton, M.; Bolton, A.S.; Brinkmann, J.; Brownstein, J.R.; Burden, A.; et al. The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: baryon acoustic oscillations in the Data Releases 10 and 11 Galaxy samples. Mon. Not. R. Astron. Soc.
**2014**, 441, 24. [Google Scholar] [CrossRef] [Green Version] - Delubac, T.; Bautista, J.E.; Busca, N.G.; Rich, J.; Kirkby, D.; Bailey, S.; Font-Ribera, A.; Slosar, A.; Lee, K.G.; Pieri, M.M.; et al. Baryon acoustic oscillations in the Lyα forest of BOSS DR11 quasars. Astron. Astrophys.
**2015**, 574, A59. [Google Scholar] [CrossRef] [Green Version] - Font-Ribera, A.; Kirkby, D.; Busca, N.; Miralda-Escudé, J.; Ross, N.P.; Slosar, A.; Rich, J.; Aubourg, E.; Bailey, S.; Bhardwaj, V.; et al. Quasar-Lyman α forest cross-correlation from BOSS DR11: Baryon Acoustic Oscillations. J. Cosmol. Astropart. Phys.
**2014**, 5, 27. [Google Scholar] [CrossRef] - Wei, H. Observational constraints on cosmological models with the updated long gamma-ray bursts. J. Cosmol. Astropart. Phys.
**2010**, 1008, 020. [Google Scholar] [CrossRef] - Haridasu, B.S.; Luković, V.V.; D’Agostino, R.; Vittorio, N. Strong evidence for an accelerating Universe. Astron. Astrophys.
**2017**, 600, L1. [Google Scholar] [CrossRef] - Amati, L.; Frontera, F.; Guidorzi, C. Extremely energetic Fermi gamma-ray bursts obey spectral energy correlations. Astron. Astrophys.
**2009**, 508, 173. [Google Scholar] [CrossRef] - Amati, L.; Frontera, F.; Tavani, M.; in’t Zand, J.J.M.; Antonelli, A.; Costa, E.; Feroci, M.; Guidorzi, C.; Heise, J.; Masetti, N.; et al. Intrinsic spectra and energetics of BeppoSAX Gamma-Ray Bursts with known redshifts. Astron. Astrophys.
**2002**, 390, 81. [Google Scholar] [CrossRef] - Amati, L.; Guidorzi, C.; Frontera, F.; Della Valle, M.; Finelli, F.; Landi, R.; Montanari, E. Measuring the cosmological parameters with the E
_{p,i}− E_{iso}correlation of gamma-ray bursts. Mon. Not. R. Astron. Soc.**2008**, 391, 577. [Google Scholar] [CrossRef] - Kosowsky, A.; Milosavljevic, M.; Jimenez, R. Efficient cosmological parameter estimation from microwave background anisotropies. Phys. Rev. D
**2002**, 66, 063007. [Google Scholar] [CrossRef] - Wang, Y.; Mukherjee, P. Observational Constraints on Dark Energy and Cosmic Curvature. Phys. Rev. D
**2007**, 76, 103533. [Google Scholar] [CrossRef] - Planck Collaboration. Planck 2015 results. XIV. Dark energy and modified gravity. Astron. Astrophys.
**2016**, 594, A14. [Google Scholar] [CrossRef] - Riess, A.G.; Macri, L.M.; Hoffmann, S.L. A 2.4% Determination of the Local Value of the Hubble Constant. Astrophys. J.
**2016**, 826, 56. [Google Scholar] [CrossRef] - Riess, A.G.; Casertano, S.; Yuan, W.; Macri, L.; Anderson, J.; MacKenty, J.W.; Bowers, J.B.; Clubb, K.I.; Filippenko, A.V.; Jones, D.O.; et al. New Parallaxes of Galactic Cepheids from Spatially Scanning the Hubble Space Telescope: Implications for the Hubble Constant. arXiv, 2018; arXiv:1801.01120. [Google Scholar]
- Yu, H.; Ratra, B.; Wang, F.Y. Hubble Parameter and Baryon Acoustic Oscillation Measurement Constraints on the Hubble Constant, the Deviation from the Spatially Flat ΛCDM Model, the Deceleration-Acceleration Transition Redshift, and Spatial Curvature. Astrophys. J.
**2018**, 856, 3. [Google Scholar] [CrossRef] - Gómez-Valent, A.; Amendola, L. H
_{0}from cosmic chronometers and Type Ia supernovae, with Gaussian Processes and the novel Weighted Polynomial Regression method. J. Cosmol. Astropart. Phys.**2018**, 2018, 051. [Google Scholar] [CrossRef] - Wang, D.; Zhang, W. Machine Learning Cosmic Expansion History. arXiv, 2018; arXiv:1712.09208. [Google Scholar]
- LSST Science Collaborations and LSST Project. LSST Science Book, 2nd ed.; LSST Science Collaborations and LSST Project: Tucson, AZ, USA, 2009. [Google Scholar]
- Laureijs, R.; Amiaux, J.; Arduini, S.; Auguères, J.L.; Brinchmann, J.; Cole, R.; Cropper, M.; Dabin, C.; Duvet, L.; Ealet, A.; et al. Euclid Definition Study Report ESA/SRE(2011)12. arXiv, 2011; arXiv:1110.3193. [Google Scholar]
- Spergel, D.; Gehrels, N.; Baltay, C.; Bennett, D.; Breckinridge, J.; Donahue, M.; Dressler, A.; Gaudi, B.S.; Greene, T.; Guyon, O.; et al. Wide-Field InfrarRed Survey Telescope-Astrophysics Focused Telescope Assets WFIRST-AFTA 2015 Report. arXiv, 2015; arXiv:1503.03757. [Google Scholar]
- Kashlinsky, A.; Arendt, R.G.; Atrio-Barandela, F.; Helgason, K. Lyman-tomography of cosmic infrared background fluctuations with Euclid: Probing emissions and baryonic acoustic oscillations at z > 10. Astrophys. J. Lett.
**2015**, 813, L12. [Google Scholar] [CrossRef]

**Figure 1.**The figure shows as function of redshift the Hubble constant in panel (

**a**), the luminosity distance in panel (

**b**), and the CMB temperature in panels (

**c**) and (

**d**). Colors and lines indicate the different values assigned to the parameters m and $\gamma $ to illustrate their impact on the observables.

**Figure 2.**2D marginalized contours of the model parameters $[{H}_{0},{\mathsf{\Omega}}_{0},m,\gamma ]$ obtained from the MCMC analysis. The 68% (dark grey) and 95% (light grey) confidence levels are shown for each pair of parameters. In each row, the marginalized likelihood distribution is also shown.

**Figure 3.**2D marginalized 68% (solid line) and 95% (dashed line) contours of the model parameters $[m,\gamma ]$ obtained from the MCMC analysis.

Parameter | Priors |
---|---|

${H}_{0}$ | $[50.0,100.0]$ |

${\mathsf{\Omega}}_{m,0}$ | $[0.0,1.0]$ |

m | [−1, 1] |

$\gamma $ | $[1.0,2.0]$ |

**Table 2.**Maximum likelihood parameters and $1\sigma $ uncertainties from the MCMC algorithm and for the following datasets.

Dataset | $[{\mathit{H}}_{0},{\mathsf{\Omega}}_{\mathit{m},0}]$ Free | |||
---|---|---|---|---|

${\mathbf{H}}_{\mathbf{0}}$ | ${\mathsf{\Omega}}_{\mathit{m},\mathbf{0}}$ | $\mathbf{m}$ | $\mathbf{\gamma}$ | |

$H\left(z\right)$+${T}_{CMB}$ | $66.{9}_{-2.34}^{+2.56}$ | $0.{314}_{-0.045}^{+0.055}$ | $0.{07}_{-0.14}^{+0.16}$ | $1.34\pm 0.02$ |

SNIa+$H\left(z\right)$+${T}_{CMB}$ | $71.{02}_{-0.91}^{+0.85}$ | $0.26\pm 0.03$ | $0.01\pm 0.11$ | $1.34\pm 0.02$ |

SNIa+GRB+$H\left(z\right)$+${T}_{CMB}$ | $71.{46}_{-0.85}^{+0.84}$ | $0.25\pm 0.03$ | $0.{03}_{-0.11}^{+0.10}$ | $1.34\pm 0.02$ |

SNIa+GRB+$H\left(z\right)$+BAO+${T}_{CMB}$ | $70.{31}_{-0.62}^{+0.66}$ | $0.30\pm 0.01$ | $0.18\pm 0.06$ | $1.36\pm 0.01$ |

SNIa+GRB+$H\left(z\right)$+BAO+${T}_{CMB}$+CMB | $69.8\pm 0.6$ | $0.29\pm 0.01$ | $0.01\pm 0.02$ | $1.335\pm 0.005$ |

$[{H}_{0},{\mathsf{\Omega}}_{m,0}]=[67.37,0.315]$ | ||||

$H\left(z\right)$+${T}_{CMB}$ | $0.08\pm 0.07$ | $1.34\pm 0.01$ | ||

SNIa+$H\left(z\right)$+${T}_{CMB}$ | $0.05\pm 0.07$ | $1.34\pm 0.01$ | ||

SNIa+GRB+$H\left(z\right)$+${T}_{CMB}$ | $0.{04}_{-0.08}^{+0.07}$ | $1.34\pm 0.01$ | ||

SNIa+GRB+$H\left(z\right)$+BAO+${T}_{CMB}$ | $0.05\pm 0.06$ | $1.339\pm 0.009$ | ||

SNIa+GRB+$H\left(z\right)$+BAO+${T}_{CMB}$+CMB | $0.01\pm 0.02$ | $1.332\pm 0.005$ |

© 2018 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

De Martino, I.
Decaying Dark Energy in Light of the Latest Cosmological Dataset. *Symmetry* **2018**, *10*, 372.
https://doi.org/10.3390/sym10090372

**AMA Style**

De Martino I.
Decaying Dark Energy in Light of the Latest Cosmological Dataset. *Symmetry*. 2018; 10(9):372.
https://doi.org/10.3390/sym10090372

**Chicago/Turabian Style**

De Martino, Ivan.
2018. "Decaying Dark Energy in Light of the Latest Cosmological Dataset" *Symmetry* 10, no. 9: 372.
https://doi.org/10.3390/sym10090372