# New Holographic Dark Energy Model in Brans-Dicke Theory

^{1}

^{2}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. NHDE Model and BD Theory

#### 2.1. Non-Interacting Case

#### 2.2. Interacting Case

## 3. Om-Diagnostic

## 4. Conclusions

## Author Contributions

## Acknowledgments

## Conflicts of Interest

## References

- Brans, C.; Dicke, R.H. Mach’s principle and a relativistic theory of gravitation. Phys. Rev.
**1961**, 124, 925. [Google Scholar] [CrossRef] - Nojiri, S.I.; Odintsov, S.D. Unified cosmic history in modified gravity: From F (R) theory to Lorentz non-invariant models. Phys. Rep.
**2011**, 505, 59–144. [Google Scholar] [CrossRef] - Capozziello, S.; De Laurentis, M. Extended theories of gravity. Phys. Rep.
**2011**, 509, 167–321. [Google Scholar] [CrossRef] - Nojiri, S.; Odintsov, S.D.; Oikonomou, V.K. Modified gravity theories on a nutshell: Inflation, bounce and late-time evolution. Phys. Rep.
**2017**, 692, 1–104. [Google Scholar] [CrossRef] - Capozziello, S.; Faraoni, V. Beyond Einstein gravity: A Survey of gravitational theories for cosmology and astrophysics. Fundam. Theor. Phys.
**2010**, 170. [Google Scholar] [CrossRef] - Bamba, K.; Odintsov, S.D. Inflationary cosmology in modified gravity theories. Symmetry
**2015**, 7, 220–240. [Google Scholar] [CrossRef] - Bamba, K.; Capozziello, S.; Nojiri, S.I.; Odintsov, S.D. Dark energy cosmology: The equivalent description via different theoretical models and cosmography tests. Astrophys. Space Sci.
**2012**, 342, 155–228. [Google Scholar] [CrossRef] - Kleidis, K.; Spyrou, N.K. Dark Energy: The Shadowy Reflection of Dark Matter? Entropy
**2016**, 18, 94. [Google Scholar] [CrossRef] - Li, M. A model of holographic dark energy. Phys. Lett. B
**2004**, 603, 1–5. [Google Scholar] [CrossRef] - Hsu, SD. Entropy bounds and dark energy. Phys. Lett. B
**2004**, 594, 13–16. [Google Scholar] [CrossRef] - Xu, L.; Li, W.; Lu, J. Holographic dark energy in Brans–Dicke theory. Eur. Phys. J. C
**2009**, 60, 135–140. [Google Scholar] [CrossRef] - Nojiri, S.I.; Odintsov, S.D.; Tsujikawa, S. Properties of singularities in the (phantom) dark energy universe. Phys. Rev. D
**2005**, 71. [Google Scholar] [CrossRef] - Kleidis, K.; Oikonomou, V.K. Effects of finite-time singularities on gravitational waves. Astrophys. Space Sci.
**2016**, 361, 326. [Google Scholar] [CrossRef] - Granda, L.N.; Oliveros, A. Infrared cut-off proposal for the holographic density. Phys. Lett. B
**2008**, 669, 275–277. [Google Scholar] [CrossRef] - Oliveros, A.; Acero, M.A. New holographic dark energy model with non-linear interaction. Astrophys. Space Sci.
**2015**, 357, 12. [Google Scholar] [CrossRef] - Fayaz, V.; Hossienkhani, H.; Pasqua, A.; Amirabadi, M.; Ganji, M. f (T) theories from holographic dark energy models within Bianchi type I universe. Eur. Phys. J. Plus
**2015**, 130, 28. [Google Scholar] [CrossRef] - Sadri, E.; Vakili, B. A new holographic dark energy model in Brans-Dicke theory with logarithmic scalar field. Astrophys. Space Sci.
**2018**, 363, 13. [Google Scholar] [CrossRef] - Jahromi, A.S.; Moosavi, S.A.; Moradpour, H.; Graça, J.M.; Lobo, I.P.; Salako, I.G.; Jawad, A. Generalized entropy formalism and a new holographic dark energy model. Phys. Lett. B
**2018**, 780, 21–24. [Google Scholar] [CrossRef] - Reddy, D.R.; Naidu, R.L.; Rao, V.U. A cosmological model with negative constant deceleration parameter in Brans-Dicke theory. Int. J. Theor. Phys.
**2007**, 46, 1443–1448. [Google Scholar] [CrossRef] - Setare, M.R. The holographic dark energy in non-flat Brans–Dicke cosmology. Phys. Lett. B
**2007**, 644, 99–103. [Google Scholar] [CrossRef] - Kumar, S.; Singh, C.P. Exact bianchi type-I cosmological models in a scalar-tensor theory. Int. J. Theor. Phys.
**2008**, 47, 1722–1730. [Google Scholar] [CrossRef] - Setare, M.R.; Vagenas, E.C. The cosmological dynamics of interacting holographic dark energy model. Int. J. Mod. Phys. D
**2009**, 18, 147–157. [Google Scholar] [CrossRef] - Sharif, M.; Kausar, H.R. Anisotropic fluid and Bianchi type III model in f (R) gravity. Phys. Lett. B
**2011**, 697, 1–6. [Google Scholar] [CrossRef] - Sharif, M.; Kausar, H.R. Non-vacuum solutions of Bianchi type VI 0 universe in f (R) gravity. Astrophys. Space Sci.
**2011**, 332, 463–471. [Google Scholar] [CrossRef] - Sharif, M.; Waheed, S. Anisotropic universe models in Brans–Dicke theory. Eur. Phys. J. C
**2012**, 72, 1876. [Google Scholar] [CrossRef] - Srivastava, M.; Singh, C.P. Holographic Dark Energy Model in Brans-Dicke Theory with Future Event Horizon. arXiv, 2017; arXiv:1706.06777. [Google Scholar]
- Felegary, F.; Darabi, F.; Setare, M.R. Interacting holographic dark energy model in Brans–Dicke cosmology and coincidence problem. Int. J. Mod. Phys. D
**2018**, 27, 1850017. [Google Scholar] [CrossRef] - Nojiri, S.I.; Odintsov, S.D. Unifying phantom inflation with late-time acceleration: Scalar phantom–non-phantom transition model and generalized holographic dark energy. Gen. Relativ. Gravit.
**2006**, 38, 1285–1304. [Google Scholar] [CrossRef] - Nojiri, S.I.; Odintsov, S.D. Covariant generalized holographic dark energy and accelerating universe. Eur. Phys. J. C
**2017**, 77, 528. [Google Scholar] [CrossRef] - Sharif, M.; Jawad, A. Analysis of pilgrim dark energy models. Eur. Phys. J. C
**2013**, 73. [Google Scholar] [CrossRef] - Caldwell, R.R.; Linder, E.V. Limits of quintessence. Phys. Rev. Lett.
**2005**, 95. [Google Scholar] [CrossRef] [PubMed] - Sahni, V.; Shafieloo, A.; Starobinsky, A.A. Two new diagnostics of dark energy. Phys. Rev. D
**2008**, 78. [Google Scholar] [CrossRef]

**Figure 1.**Plot of ${\omega}_{D}-{\dot{\omega}}_{D}$ plane with ${c}_{2}=5$ (

**left**), ${c}_{2}=-10$ (

**right**), ${c}_{1}=1$, $c=0.8,\phantom{\rule{3.33333pt}{0ex}}m=-1.55$ and $\alpha =3.5$ for non-interacting case.

**Figure 2.**Plot of ${\upsilon}_{s}^{2}\left(t\right)$ versus t (the unit of which is second) with ${c}_{1}=1$, ${c}_{2}=5$, $c=0.8,\phantom{\rule{3.33333pt}{0ex}}m=-1.55$ and $\alpha =3.5$ for non-interacting case.

**Figure 3.**Plot of ${\omega}_{D}-{\dot{\omega}}_{D}$ plane with ${c}_{2}=5$ (

**left**), ${c}_{2}=-10$ (

**right**), ${c}_{1}=1$, $c=0.8,\phantom{\rule{3.33333pt}{0ex}}m=-1.55$ and $\alpha =3.5$ for interacting case.

**Figure 4.**Plot of ${\upsilon}_{s}^{2}\left(t\right)$ versus t (the unit of which is second) with ${c}_{1}=1$, ${c}_{2}=5$, $c=0.8,\phantom{\rule{3.33333pt}{0ex}}m=-1.55$ and $\alpha =3.5$ for interacting case.

**Figure 5.**Plot of Om(t) versus t (the unit of which is second) with ${c}_{1}=1$, ${c}_{2}=5$, $m=-1.55$, $\alpha =3.5$ and ${H}_{0}=68$.

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Sharif, M.; Asif Ali Shah, S.; Bamba, K.
New Holographic Dark Energy Model in Brans-Dicke Theory. *Symmetry* **2018**, *10*, 153.
https://doi.org/10.3390/sym10050153

**AMA Style**

Sharif M, Asif Ali Shah S, Bamba K.
New Holographic Dark Energy Model in Brans-Dicke Theory. *Symmetry*. 2018; 10(5):153.
https://doi.org/10.3390/sym10050153

**Chicago/Turabian Style**

Sharif, M., Syed Asif Ali Shah, and Kazuharu Bamba.
2018. "New Holographic Dark Energy Model in Brans-Dicke Theory" *Symmetry* 10, no. 5: 153.
https://doi.org/10.3390/sym10050153