On the Multiplicative Degree-Based Topological Indices of Silicon-Carbon Si2C3-I[p,q] and Si2C3-II[p,q]
Abstract
:1. Introduction
2. Computational Results
3. Remarks
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Todeschini, R.; Consonni, V. New local vertex invariants and molecular descriptors based on functions of the vertex degrees. Match Commun. Math. Comput. Chem. 2010, 64, 359–372. [Google Scholar]
- Todeschini, R.; Consonni, V. Molecular Descriptors for Chemoinformatics: Volume I: Alphabetical Listing/Volume II: Appendices, References; John Wiley & Sons: New York, NY, USA, 2009; Volume 41. [Google Scholar]
- West, D.B. Introduction to Graph Theory; Prentice-Hall: Upper Saddle River, NJ, USA, 2001; Volume 2. [Google Scholar]
- Wiener, H. Structural determination of paraffin boiling points. J. Am. Chem. Soc. 1947, 69, 17–20. [Google Scholar] [CrossRef] [PubMed]
- Randic, M. Characterization of molecular branching. J. Am. Chem. Soc. 1975, 97, 6609–6615. [Google Scholar] [CrossRef]
- Bollobás, B.; Erdös, P. Graphs of extremal weights. Ars Comb. 1998, 50, 225–233. [Google Scholar] [CrossRef]
- Amić, D.; Bešlo, D.; Lučić, B.; Nikolić, S.; Trinajstić, N. The vertex-connectivity index revisited. J. Chem. Inf. Comput. Sci. 1998, 38, 819–822. [Google Scholar] [CrossRef]
- Hu, Y.; Li, X.; Shi, Y.; Xu, T.; Gutman, I. On molecular graphs with smallest and greatest zeroth-order general Randic index. Match Commun. Math. Comput. Chem. 2005, 54, 425–434. [Google Scholar]
- Li, X.; Gutman, I.; Randić, M. Mathematical Aspects of Randić-Type Molecular Structure Descriptors; Nankai University, Faculty of Science: Tianjin, China, 2006. [Google Scholar]
- Randić, M. On history of the Randić index and emerging hostility toward chemical graph theory. Match Commun. Math. Comput. Chem. 2008, 59, 5–124. [Google Scholar]
- Randić, M. The connectivity index 25 years after. J. Mol. Gr. Model. 2001, 20, 19–35. [Google Scholar] [CrossRef]
- Gutman, I.; Furtula, B. Recent Results in the Theory of Randić Index; University of Kragujevac and Faculty of Science Kragujevac: Kragujevac, Serbia, 2008. [Google Scholar]
- Li, X.; Shi, Y. A survey on the Randic index. Match Commun. Math. Comput. Chem. 2008, 59, 127–156. [Google Scholar]
- Gutman, I.; Trinajstić, N. Graph theory and molecular orbitals. Total π-electron energy of alternant hydrocarbons. Chem. Phys. Lett. 1972, 17, 535–538. [Google Scholar] [CrossRef]
- Eliasi, M.; Vukicevic, D. Comparing the multiplicative Zagreb indices. Match Commun. Math. Comput. Chem. 2013, 69, 765–773. [Google Scholar]
- Gutman, I.; Ruscić, B.; Trinajstić, N.; Wilcox, C.F., Jr. Graph theory and molecular orbitals. XII. Acyclic polyenes. J. Chem. Phys. 1975, 62, 3399–3405. [Google Scholar] [CrossRef]
- Narumi, H.; Katayama, M. Simple Topological Index: A Newly Devised Index Characterizing the Topological Nature of Structural Isomers of Saturated Hydrocarbons; Hokkaido University, Memoirs of the Faculty of Engineering: Hokkaido, Japan, 1984; Volume 16, pp. 209–214. [Google Scholar]
- Gutman, I. Multiplicative Zagreb indices of trees. Bull. Soc. Math. Banja Luka 2011, 18, 17–23. [Google Scholar]
- Todeschini, R.; Ballabio, D.; Consonni, V. Novel molecular descriptors based on functions of new vertex degrees. In Novel Molecular Structure Descriptors—Theory and Applications I; Gutman, I., Furtula, B., Eds.; University of Kragujevac: Kragujevac, Serbia, 2010; pp. 73–100. [Google Scholar]
- Wang, S.; Wei, B. Multiplicative Zagreb indices of k-trees. Discret. Appl. Math. 2015, 180, 168–175. [Google Scholar] [CrossRef]
- Eliasi, M.; Iranmanesh, A.; Gutman, I. Multiplicative versions of first Zagreb index. Match Commun. Math. Comput. Chem. 2012, 68, 217. [Google Scholar]
- Kulli, V.R. Multiplicative Hyper-Zagreb Indices and Coindices of Graphs: Computing These Indices of Some Nanostructures. Int. Res. J. Pure Algebra 2016, 6, 2248–9037. [Google Scholar]
- Kulli, V.R.; Stone, B.; Wang, S.; Wei, B. Generalised multiplicative indices of polycyclic aromatic hydrocarbons and benzenoid systems. Zeitschrift für Naturforschung A 2017, 72, 573–576. [Google Scholar] [CrossRef]
- Kulli, V.R. Multiplicative connectivity indices of TUC4C8 [m, n] and TUC4 [m, n] nanotubes. J. Comput. Math. Sci. 2016, 7, 599–605. [Google Scholar]
- Imran, M.; Ali, M.A.; Ahmad, S.; Siddiqui, M.K.; Baig, A.Q. Topological Characterization of the Symmetrical Structure of Bismuth Tri-Iodide. Symmetry 2018, 10, 201. [Google Scholar] [CrossRef]
- Estrada, E.; Torres, L.; Rodriguez, L.; Gutman, I. An atom-bond connectivity index: Modelling the enthalpy of formation of alkanes. NISCAIR-CSIR 1998, 37A, 849–855. [Google Scholar]
- Zhou, B.; Gutman, I. Relations between Wiener, hyper-Wiener and Zagreb indices. Chem. Phys. Lett. 2004, 394, 93–95. [Google Scholar] [CrossRef]
- Imran, M.; Siddiqui, M.K.; Naeem, M.; Iqbal, M.A. On Topological Properties of Symmetric Chemical Structures. Symmetry 2018, 10, 173. [Google Scholar] [CrossRef]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kwun, Y.C.; Virk, A.U.R.; Nazeer, W.; Rehman, M.A.; Kang, S.M. On the Multiplicative Degree-Based Topological Indices of Silicon-Carbon Si2C3-I[p,q] and Si2C3-II[p,q]. Symmetry 2018, 10, 320. https://doi.org/10.3390/sym10080320
Kwun YC, Virk AUR, Nazeer W, Rehman MA, Kang SM. On the Multiplicative Degree-Based Topological Indices of Silicon-Carbon Si2C3-I[p,q] and Si2C3-II[p,q]. Symmetry. 2018; 10(8):320. https://doi.org/10.3390/sym10080320
Chicago/Turabian StyleKwun, Young Chel, Abaid Ur Rehman Virk, Waqas Nazeer, M. A. Rehman, and Shin Min Kang. 2018. "On the Multiplicative Degree-Based Topological Indices of Silicon-Carbon Si2C3-I[p,q] and Si2C3-II[p,q]" Symmetry 10, no. 8: 320. https://doi.org/10.3390/sym10080320