# The Landau-Lifshitz Equation, the NLS, and the Magnetic Rogue Wave as a By-Product of Two Colliding Regular “Positons”

^{1}

^{2}

^{*}

^{†}

## Abstract

**:**

## 1. Introduction

## 2. NLS and Its Zero-Curvature Condition

## 3. The Reduction Restriction (and a First Snag)

## 4. Understanding the Binary DT: From the Stationary Schrödinger Equation to KdV

## 5. Binary DT and NLS

## 6. The Positon-Produced Rogue Wave

## 7. One Last Remark: But What of Generalization?

## Acknowledgments

## Author Contributions

## Conflicts of Interest

## References

- Darboux, G. Sur une proposition relative aux équations linéares. C. R. Acad. Sci.
**1882**, 94, 1456–1459. [Google Scholar] - Darboux, G. Theórie Générale des Surfaces; Chelsea: New York, NY, USA, 1972. [Google Scholar]
- Infeld, L.; Hull, T.E. The Factorization Method. Rev. Mod. Phys.
**1951**, 23, 21. [Google Scholar] [CrossRef] - Schulze-Halberg, A.; Jimenez, J.M.C. Supersymmetry of Generalized Linear Schrödinger Equations in (1+1) Dimensions. Symmetry
**2009**, 1, 115–144. [Google Scholar] [CrossRef] - Beckers, J.; Debergh, N. Parastatistics and supersymmetry in quantum mechanics. Nucl. Phys. B
**1990**, 340, 767–776. [Google Scholar] [CrossRef] - Andrianov, A.A.; Ioffe, M.V. From supersymmetric quantum mechanics to a parasupersymmetric one. Phys. Lett. B
**1990**, 255, 543–548. [Google Scholar] [CrossRef] - Yurova, A.A.; Yurov, A.V.; Yurov, V.A. When the supersymmetry is not enough: The parasupersymmetric algebras of the Boussinesq equations. TASK Q.
**2016**, 20, 241–248. [Google Scholar] - Veselov, A.P.; Shabat, A.B. Dressing chains and the spectral theory of the Schrödinger operator. Funct. Anal. Appl.
**1993**, 27, 81–96. [Google Scholar] [CrossRef] - Matveev, V.B. Positon-positon and soliton-positon collisions: KdV case. Phys. Lett. A
**1992**, 166, 209–212. [Google Scholar] [CrossRef] - Borisov, A.B.; Zykov, S.A. The dressing chain of discrete symmetries and proliferation of nonlinear equations. Theor. Math. Phys.
**1998**, 115, 530–541. [Google Scholar] [CrossRef] - Shabat, A.B. Third version of the dressing method. Theor. Math. Phys.
**1999**, 121, 1397–1408. [Google Scholar] [CrossRef] - Yurov, A.V. Discrete symmetry’s chains and links between integrable equations. J. Math. Phys.
**2003**, 44, 1183–1201. [Google Scholar] [CrossRef] - Landau, L.D.; Lifshitz, E.M. Theory of the dispersion of magnetic permeability in ferromagnetic bodies. Phys. Z. Sowietunion
**1935**, 8, 153–169. [Google Scholar] - Gilbert, T.L. A phenomenological theory of damping in ferromagnetic materials. IEEE Trans. Mag.
**1935**, 40, 3443–3449. [Google Scholar] [CrossRef] - Visintin, A. Modified Landau-Lifshitz equation for ferromagnetism. Physica B
**1997**, 233, 365–369. [Google Scholar] [CrossRef] - Lakshmanan, M. Continuum spin system as an exactly solvable dynamical system. Phys. Lett. A
**1997**, 61, 53–54. [Google Scholar] [CrossRef] - Zakharov, V.E.; Takhtadzhyan, A. Equivalence of the nonlinear Schrödinger equation and the equation of a Heisenberg ferromagnet. Theor. Math. Phys.
**1979**, 38, 17–23. [Google Scholar] [CrossRef] - Kundu, A. Landau-Lifshitz and higher-order nonlinear systems gauge generated from nonlinear Schrödinger type equations. J. Math. Phys.
**1984**, 25, 3433–3438. [Google Scholar] [CrossRef] - Zhaoa, F.; Lia, Z.D.; Lia, Q.Y.; Wenb, L.; Fua, G.; Liu, W.M. Magnetic rogue wave in a perpendicular anisotropic ferromagnetic nanowire with spin-transfer torque. Ann. Phys.
**2012**, 327, 2085–2095. [Google Scholar] [CrossRef] - Giridharan, D.; Sabareesan, P.; Daniel, M. Soliton solution for the Landau-Lifshitz equation of a one-dimensional bicomponent magnonic crystal. Phys. Rev. E
**2016**, 94, 032222. [Google Scholar] [CrossRef] [PubMed] - Gerasimchuk, I.V.; Gorobets, Y.I.; Gerasimchuk, V.S. Nonlinear Schrödinger Equation for Description of Small-amplitude Spin Waves in Multilayer Magnetic Materials. J. Nano Electron. Phys.
**2016**, 8, 02020.1–02020.6. [Google Scholar] [CrossRef] - Kosevich, A.M.; Ivanov, B.A.; Kovalev, A.S. Magnetic Solitons. Phys. Rep.
**1990**, 194, 117–238. [Google Scholar] [CrossRef] - Peregrine, D.H. Water waves, nonlinear Schrödinger equations and their solutions. J. Aust. Math. Soc. B
**1983**, 25, 16–43. [Google Scholar] [CrossRef] - Hansteen, O.E.; Jostad, H.P.; Tjelta, T.I. Observed Platform response to a ‘monster’ wave. In Proceedings of the Sixth International Symposium on Field Measurements in Geomechanics, Oslo, Norway, 15–18 September 2003; pp. 73–86. [Google Scholar]
- Kibler, B.; Fatome, J.; Finot, C.; Millot, G.; Dias, F.; Genty, G.; Akhmediev, N.; Dudley, J.M. The Peregrine soliton in nonlinear fibre optics. Nat. Phys.
**2010**, 6, 790–795. [Google Scholar] [CrossRef] - Bailung, H.; Sharma, S.K.; Nakamura, Y. Observation of Peregrine solitons in a multicomponent plasma with negative ion. Phys. Rev. Lett.
**2011**, 107, 255005. [Google Scholar] [CrossRef] [PubMed] - Chabchoub, A.; Hoffmann, N.P.; Akhmediev, N. Rogue wave observation in a water wave tank. Phys. Rev. Lett.
**2011**, 106, 204502. [Google Scholar] [CrossRef] [PubMed] - Dubard, P.; Gaillard, P.; Klein, C.; Matveev, V. On multi-rogue wave solutions of the NLS equation and positon solutions of the KdV equation. Eur. Phys. J. Spec. Top.
**2010**, 185, 247–258. [Google Scholar] [CrossRef] - Dubard, P.; Matveev, V.B. Multi-rogue waves solutions to the focusing NLS equation and the KP-I equation. Nat. Hazards Earth Syst. Sci.
**2011**, 11, 667–672. [Google Scholar] [CrossRef] - Matveev, V.B.; Salle, M.A. Darboux Transformation and Solitons; Springer: Berlin/Heidelberg, Germany, 1991. [Google Scholar]
- Matveev, V.B. Positons: Slowly Decreasing Analogues of Solitons. Theor. Math. Phys.
**2002**, 131, 483–497. [Google Scholar] [CrossRef] - Yurova, A.A.; Yurov, A.V.; Rudnev, M. Darboux transformation for classical acoustic spectral problem. IJMMS
**2003**, 49, 3123–3142. [Google Scholar] [CrossRef] - Beutler, R. Positon solutions of the sine-Gordon equation. J. Math. Phys.
**1993**, 34, 3098–3109. [Google Scholar] [CrossRef] - Jaworski, M.; Zagrodziński, J. Positon and positon-like solutions of the Korteweg-de Vries and Sine-Gordon equations. Chaos Sol. Fract.
**1995**, 5, 2229–2233. [Google Scholar] [CrossRef] - Aranson, I.S.; Kramer, L. The world of the complex Ginzburg-Landau equation. Rev. Mod. Phys.
**2002**, 74, 99. [Google Scholar] [CrossRef] - Tajiri, M. On Soliton Solutions of the Nonlinear Coupled Klein-Gordon Equation. J. Phys. Soc. Jpn.
**1983**, 52, 3722–3726. [Google Scholar] [CrossRef]

**Figure 1.**A graph of function ${\left|{u}^{(+1,-1)}(x,t)\right|}^{2}$ at $t=-5$. The parameter $\beta =1$.

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Yurov, A.V.; Yurov, V.A.
The Landau-Lifshitz Equation, the NLS, and the Magnetic Rogue Wave as a By-Product of Two Colliding Regular “Positons”. *Symmetry* **2018**, *10*, 82.
https://doi.org/10.3390/sym10040082

**AMA Style**

Yurov AV, Yurov VA.
The Landau-Lifshitz Equation, the NLS, and the Magnetic Rogue Wave as a By-Product of Two Colliding Regular “Positons”. *Symmetry*. 2018; 10(4):82.
https://doi.org/10.3390/sym10040082

**Chicago/Turabian Style**

Yurov, Artyom V., and Valerian A. Yurov.
2018. "The Landau-Lifshitz Equation, the NLS, and the Magnetic Rogue Wave as a By-Product of Two Colliding Regular “Positons”" *Symmetry* 10, no. 4: 82.
https://doi.org/10.3390/sym10040082