Spontaneous Symmetry Breaking and Higgs Mode: Comparing Gross-Pitaevskii and Nonlinear Klein-Gordon Equations
Abstract
:1. Introduction
2. Spontaneous Symmetry Breaking: Non-Relativistic Case
2.1. Elementary Excitations from Non-Relativistic Partition Function
2.2. Elementary Excitations from Non-Relativistic Equation of Motion
2.2.1. Non-Relativistic Complex Fluctuations
2.2.2. Non-Relativistic Amplitude and Phase Fluctuations
3. Spontaneous Symmetry Breaking: Relativistic Case
3.1. Elementary Excitations from Relativistic Partition Function
3.2. Elementary Excitations from Nonlinear Klein-Gordon Equation
3.2.1. Relativistic Complex Fluctuations
3.2.2. Relativistic Amplitude and Phase Fluctuations
4. Analysis and Comparison of Spectra
5. Application: The Bose-Hubbard Model
6. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Huang, K. Statistical Machanics; Wiley and Sons: Hoboken, NJ, USA, 1987. [Google Scholar]
- Landau, L. Theory of phase transformations. I. Zh. Eksp. Teor. Fiz. 1937, 7, 19. [Google Scholar]
- Landau, L. Theory of phase transformations. II. Zh. Eksp. Teor. Fiz. 1937, 7, 627. [Google Scholar]
- Malomed, B.A. Spontaneous Symmetry Breaking, Self-Trapping, and Josephson Oscillations; Springer: Berlin, Germany, 2003. [Google Scholar]
- Stoof, H.T.C.; Gubbels, K.B.; Dickerscheid, D.B.M. Ultracold Quantum Fields; Springer: Berlin, Germany, 2009. [Google Scholar]
- Altland, A.; Simons, B. Condensed Matter Field Theory; Cambridge University Press: Cambridge, UK, 2010. [Google Scholar]
- Kapusta, J.I.; Gale, C. Finite Temperature Field Theory: Principles and Applications, 2nd ed.; Cambridge University Press: Cambridge, UK, 2006. [Google Scholar]
- Salasnich, L.; Parola, A.; Reatto, L. Bose condensate in a double-well trap: Ground state and elementary excitations. Phys. Rev. A 1999, 60, 4171. [Google Scholar] [CrossRef]
- Adhikari, S.K.; BA Malomed, B.A.; Salasnich, L.; Toigo, F. Spontaneous symmetry breaking of Bose-Fermi mixtures in double-well potentials. Phys. Rev. A 2010, 81, 053630. [Google Scholar] [CrossRef]
- Mazzarella, G.; Salasnich, L.; Salerno, M.; Toigo, F. Atomic Josephson junction with two bosonic species. J. Phys. A At. Mol. Opt. Phys. 2009, 42, 125301. [Google Scholar] [CrossRef]
- Mazzarella, G.; Salasnich, L. Spontaneous symmetry breaking and collapse in bosonic Josephson junctions. Phys. Rev. A 2010, 82, 033611. [Google Scholar] [CrossRef]
- Chen, Z.; Li, Y.; Malomed, B.A.; Salasnich, L. Spontaneous symmetry breaking of fundamental states, vortices, and dipoles in two- and one-dimensional linearly coupled traps with cubic self-attractions. Phys. Rev. A 2010, 82, 033611. [Google Scholar] [CrossRef]
- Gross, E.P. Structure of a quantized vortex in boson systems. Nuovo Cimento 1961, 20, 454–477. [Google Scholar] [CrossRef]
- Pitaevskii, L.P. Vortex lines in an imperfect Bose gas. Sov. Phys. JETP 1961, 1, 451–454. [Google Scholar]
- Klein, O. Quantentheorie und funfdimensionale Relativitatstheorie. Z. Phys. 1926, 37, 895–906. [Google Scholar] [CrossRef]
- Gordon, W. Der Comptoneffekt nach der Schrodingerschen Theorie. Z. Phys. 1926, 40, 117–133. [Google Scholar] [CrossRef]
- Goldstone, J.; Salam, A.; Weinberg, S. Broken Symmetries. Phys. Rev. 1962, 127, 965. [Google Scholar] [CrossRef]
- Higgs, P.W. Broken symmetries, massless particles and gauge fields. Phys. Lett. 1964, 12, 132–133. [Google Scholar] [CrossRef]
- Pekker, D.; Varma, C.M. Amplitude/Higgs Modes in Condensed Matter Physics. Ann. Rev. Cond. Matter Phys. 2015, 6, 269–297. [Google Scholar] [CrossRef]
- Leutwyler, H. Phonons as Goldstone Bosons. Helv. Phys. Acta 1997, 70, 275. [Google Scholar]
- Brauner, T. Spontaneous Symmetry Breaking and Nambu–Goldstone Bosons in Quantum Many-Body Systems. Symmetry 2010, 2, 609. [Google Scholar] [CrossRef]
- Endlich, S.; Nicolis, A.; Penco, R. Ultraviolet completion without symmetry restoration. Phys. Rev. D 2014, 89, 065006. [Google Scholar] [CrossRef]
- Watanabe, H.; Murayama, H. Effective Lagrangian for Nonrelativistic Systems. Phys. Rev. X 2014, 4, 031057. [Google Scholar] [CrossRef]
- Nielsen, H.B.; Chadha, S. On how to count Goldstone bosons. Nucl. Phys. B 1976, 105, 445–453. [Google Scholar] [CrossRef]
- Sachdev, S. Quantum Phase Transitions; Cambridge University Press: Cambridge, UK, 2011. [Google Scholar]
- Salasnich, L.; Toigo, F. Zero-point energy of ultracold atoms. Phys. Rep. 2016, 640, 1–29. [Google Scholar] [CrossRef]
- Bogoliubov, N.N. On the theory of superfluidity. J. Phys. (USSR) 1947, 11, 23. [Google Scholar]
- Kapusta, J.I. Bose-Einstein condensation, spontaneous symmetry breaking, and gauge theories. Phys. Rev. D 1981, 24, 426. [Google Scholar] [CrossRef]
- Bernstein, J.; Dodelson, S. Relativistic Bose gas. Phys. Rev. Lett. 1991, 66, 683. [Google Scholar] [CrossRef] [PubMed]
- Alford, M.G.; Mallavarapu, S.K.; Schmitt, A.; Stetina, S. From a complex scalar field to the two-fluid picture of superfluidity. Phys. Rev. D 2014, 89, 085005. [Google Scholar] [CrossRef]
- Cea, T.; Castellani, C.; Seibold, G.; Benfatto, L. Nonrelativistic Dynamics of the Amplitude (Higgs) Mode in Superconductors. Phys. Rev. Lett. 2015, 115, 157002. [Google Scholar] [CrossRef] [PubMed]
- Gersch, H.; Knollman, G. Quantum Cell Model for Bosons. Phys. Rev. 1963, 129, 959. [Google Scholar] [CrossRef]
- Hubbard, J. Electron Correlations in Narrow Energy Bands. Proc. R. Soc. Lond. 1963, 276, 238–257. [Google Scholar] [CrossRef]
- Sengupta, K.; Dupuis, N. Mott insulator to superfluid transition in the Bose-Hubbard model: A strong-coupling approach. Phys. Rev. A 2005, 71, 033629. [Google Scholar] [CrossRef]
- Endres, M.; Fukuhara, T.; Pekker, D.; Cheneau, M.; Schaub, P.; Gross, C.; Demler, E.; Kuhr, S.; Bloch, I. The Higgs Amplitude Mode at the Two-Dimensional Superfluid-Mott Insulator Transition. Nature 2012, 487, 454. [Google Scholar] [CrossRef] [PubMed]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Faccioli, M.; Salasnich, L. Spontaneous Symmetry Breaking and Higgs Mode: Comparing Gross-Pitaevskii and Nonlinear Klein-Gordon Equations. Symmetry 2018, 10, 80. https://doi.org/10.3390/sym10040080
Faccioli M, Salasnich L. Spontaneous Symmetry Breaking and Higgs Mode: Comparing Gross-Pitaevskii and Nonlinear Klein-Gordon Equations. Symmetry. 2018; 10(4):80. https://doi.org/10.3390/sym10040080
Chicago/Turabian StyleFaccioli, Marco, and Luca Salasnich. 2018. "Spontaneous Symmetry Breaking and Higgs Mode: Comparing Gross-Pitaevskii and Nonlinear Klein-Gordon Equations" Symmetry 10, no. 4: 80. https://doi.org/10.3390/sym10040080
APA StyleFaccioli, M., & Salasnich, L. (2018). Spontaneous Symmetry Breaking and Higgs Mode: Comparing Gross-Pitaevskii and Nonlinear Klein-Gordon Equations. Symmetry, 10(4), 80. https://doi.org/10.3390/sym10040080