Generalized Q-Neutrosophic Soft Expert Set for Decision under Uncertainty
Abstract
:1. Introduction
2. Preliminaries
2.1. Neutrosophic Set
2.2. Q-Neutrosophic Soft Expert Set
3. Generalized Q-Neutrosophic Soft Expert Set
- 1.
- is a fuzzy subset of that is
- 2.
- is a Q-neutrosophic soft expert subset of that is .
- (1)
- ,
- (2)
- ,
- (3)
- ,
- (4)
- .
- (1)
- We will prove that by using Definition 20 and we consider the case when as the other cases are trivial:
- (2)
- The proof is similar to that of part (1).
- (3)
- We want to prove that by using Definition 20 and we consider the case when as the other cases are trivialConsidering the case when , then we have
- (4)
- The proof is similar to that of part (3).
- (1)
- ,
- (2)
- .
4. Application of Generalized Q-Neutrosophic Soft Expert Set
- Input the GQ-NSES .
- Find the values of for each element , where representing the truth, indeterminacy and falsity membership functions.
- Compute the score of each element by taking the sum of the products of the numerical grade of each element with the corresponding values of (the degree of preference) for the agree-GQ-NSES and disagree-GQ-NSES, denoted by and , respectively.
- Find the values of the score .
- Find m for which .
5. Comparative Analysis
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Zadeh, L.A. Fuzzy sets. Inf. Control 1965, 8, 338–353. [Google Scholar] [CrossRef] [Green Version]
- Atanassov, K.T. Intuitionistic fuzzy sets. Fuzzy Sets Syst. 1986, 20, 87–96. [Google Scholar] [CrossRef]
- Smarandache, F. Neutrosophy: Neutrosophic Probability, Set and Logic; American Research Press: Rehoboth, IL, USA, 1998. [Google Scholar]
- Smarandache, F. Neutrosophic set, a generalisation of the intuitionistic fuzzy sets. Int. J. Pure Appl. Math. 2005, 24, 287–297. [Google Scholar]
- Molodtsov, D. Soft set theory-first results. Comput. Math. Appl. 1999, 37, 19–31. [Google Scholar] [CrossRef]
- Maji, P.K.; Biswas, R.; Roy, A.R. Fuzzy soft sets. J. Fuzzy Math. 2001, 9, 589–602. [Google Scholar]
- Alhazaymeh, K.; Hassan, N. Generalized interval-valued vague soft set. Appl. Math. Sci. 2013, 7, 6983–6988. [Google Scholar] [CrossRef]
- Alhazaymeh, K.; Hassan, N. Vague soft multiset theory. Int. J. Pure Appl. Math. 2014, 93, 511–523. [Google Scholar] [CrossRef]
- Alhazaymeh, K.; Hassan, N. Vague soft set relations and functions. J. Intell. Fuzzy Syst. 2015, 28, 1205–1212. [Google Scholar]
- Maji, P.K. Neutrosophic soft set. Ann. Fuzzy Math. Inform. 2013, 5, 157–168. [Google Scholar]
- Adam, F.; Hassan, N. Operations on Q-fuzzy soft set. Appl. Math. Sci. 2014, 8, 8697–8701. [Google Scholar] [CrossRef]
- Adam, F.; Hassan, N. Q-fuzzy soft set. Appl. Math. Sci. 2014, 8, 8689–8695. [Google Scholar] [CrossRef]
- Abu Qamar, M.; Hassan, N. Q-Neutrosophic soft relation and its application in decision making. Entropy 2018, 20, 172. [Google Scholar] [CrossRef]
- Abu Qamar, M.; Hassan, N. Entropy, measures of distance and similarity of Q-neutrosophic soft sets and some applications. Entropy 2018, 20, 672. [Google Scholar] [CrossRef]
- Deli, I. Interval-valued neutrosophic soft sets and its decision making. Int. J. Mach. Learn. Cybern. 2017, 8, 665–676. [Google Scholar] [CrossRef]
- Deli, I.; Broumi, S. Neutrosophic soft matrices and NSM decision making. J. Intell. Fuzzy Syst. 2015, 28, 2233–2241. [Google Scholar] [CrossRef]
- Al-Quran, A.; Hassan, N. Neutrosophic vague soft expert set theory. J. Intell. Fuzzy Syst. 2016, 30, 3691–3702. [Google Scholar] [CrossRef]
- Al-Quran, A.; Hassan, N. The complex neutrosophic soft expert set and its application in decision making. J. Intell. Fuzzy Syst. 2018, 34, 569–582. [Google Scholar] [CrossRef]
- Alkhazaleh, S. Time-neutrosophic soft set and its applications. J. Intell. Fuzzy Syst. 2016, 30, 1087–1098. [Google Scholar] [CrossRef]
- Akram, M.; Shahzadi, S.; Smarandache, F. Multi-attribute decision-making method based on neutrosophic soft rough information. Axioms 2018, 7, 19. [Google Scholar] [CrossRef]
- Shahzadi, G.; Akram, M.; Saeid, A.B. An application of single-valued neutrosophic sets in medical diagnosis. Neutrosophic Sets Syst. 2018, 18, 80–88. [Google Scholar]
- Lu, Z.; Ye, J. Cosine measures of neutrosophic cubic sets for multiple attribute decision making. Symmetry 2017, 9, 121. [Google Scholar] [CrossRef]
- Tu, A.; Ye, J.; Wang, B. Multiple attribute decision-making method using similarity measures of neutrosophic cubic sets. Symmetry 2018, 10, 215. [Google Scholar] [CrossRef]
- Cui, W.; Ye, J. Multiple-attribute decision-making method using similarity measures of hesitant linguistic neutrosophic numbers regarding least common multiple cardinality. Symmetry 2018, 10, 330. [Google Scholar] [CrossRef]
- Alqudah, Y.; Hassan, N. Complex multi-fuzzy soft set: Its entropy and similarity measure. IEEE Access 2018. [Google Scholar] [CrossRef]
- Alkhazaleh, S.; Salleh, A.R. Soft expert sets. Adv. Decis. Sci. 2011. [Google Scholar] [CrossRef]
- Alkhazaleh, S.; Salleh, A.R. Fuzzy soft expert set and its application. Appl. Math. 2014, 5, 1349–1368. [Google Scholar] [CrossRef]
- Şahin, M.; Alkhazaleh, S.; Uluçay, V. Neutrosophic soft expert sets. Appl. Math. 2015, 6, 116–127. [Google Scholar] [CrossRef]
- Alhazaymeh, K.; Hassan, N. Generalized vague soft expert set. Int. J. Pure Appl. Math. 2014, 93, 351–360. [Google Scholar] [CrossRef]
- Alhazaymeh, K.; Hassan, N. Application of generalized vague soft expert set in decision making. Int. J. Pure Appl. Math. 2014, 93, 361–367. [Google Scholar] [CrossRef]
- Alhazaymeh, K.; Hassan, N. Mapping on generalized vague soft expert set. Int. J. Pure Appl. Math. 2014, 93, 369–376. [Google Scholar] [CrossRef]
- Uluçay, V.; Şahin, M.; Hassan, N. Generalized neutrosophic soft expert set for multiple-criteria decision-making. Symmetry 2018, 10, 437. [Google Scholar] [CrossRef]
- Hassan, N.; Uluçay, V.; Şahin, M. Q-neutrosophic soft expert set and its application in decision making. Int. J. Fuzzy Syst. Appl. 2018, 7, 37–61. [Google Scholar] [CrossRef]
f(a) | |||||||
---|---|---|---|---|---|---|---|
0 | −0.1 | 0.4 | 0.1 | 0.8 | 1 | 0.2 | |
0.7 | 0.6 | 0.5 | 0.6 | 0.5 | 0.4 | 0.6 | |
0.3 | 1.1 | 0.9 | 0.4 | 0.6 | 0.5 | 0.9 | |
1.3 | −0.5 | 0.3 | 0.2 | 0.2 | 1.1 | 0.7 | |
0.6 | 0.2 | 1.1 | −0.2 | 0.5 | 0.2 | 0.5 | |
1 | 0.1 | 1.1 | 0.9 | 0.7 | 0.1 | 0.3 | |
0.9 | 0.2 | 0.1 | −0.3 | 0.5 | 1 | 0.8 | |
0.9 | 0.3 | −0.1 | 0.4 | 0.5 | 0.2 | 0.6 | |
0.1 | 0.1 | 0.6 | 0.4 | 0.5 | 0.2 | 0.5 | |
0 | 0.9 | 0.8 | 0.4 | 0.3 | 0.2 | 0.7 | |
−0.1 | −0.1 | 1.5 | 1.5 | 0.5 | 1 | 0.8 | |
0.8 | 0.5 | 1 | −0.5 | 0.5 | 0.6 | 0.4 |
f(a) | |||||||
---|---|---|---|---|---|---|---|
0 | −0.1 | 0.4 | 0.1 | 0.8 | 1 | 0.2 | |
0.7 | 0.6 | 0.5 | 0.6 | 0.5 | 0.4 | 0.6 | |
0.3 | 1.1 | 0.9 | 0.4 | 0.6 | 0.5 | 0.9 | |
1.3 | −0.5 | 0.3 | 0.2 | 0.2 | 1.1 | 0.7 | |
0.6 | 0.2 | 1.1 | −0.2 | 0.5 | 0.2 | 0.5 | |
1 | 0.1 | 1.1 | 0.9 | 0.7 | 0.1 | 0.3 |
f(a) | |||||||
---|---|---|---|---|---|---|---|
0.9 | 0.2 | 0.1 | −0.3 | 0.5 | 1 | 0.8 | |
0.9 | 0.3 | −0.1 | 0.4 | 0.5 | 0.2 | 0.6 | |
0.1 | 0.1 | 0.6 | 0.4 | 0.5 | 0.2 | 0.5 | |
0 | 0.9 | 0.8 | 0.4 | 0.3 | 0.2 | 0.7 | |
−0.1 | −0.1 | 1.5 | 1.5 | 0.5 | 1 | 0.8 | |
0.8 | 0.5 | 1 | −0.5 | 0.5 | 0.6 | 0.4 |
Method | GQ-NSES | Q-NSES |
---|---|---|
True | Yes | Yes |
Falsity | Yes | Yes |
Indeterminacy | Yes | Yes |
Expert | Yes | Yes |
Q | Yes | Yes |
Degree of preference | Yes | No |
Ranking | ||
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abu Qamar, M.; Hassan, N. Generalized Q-Neutrosophic Soft Expert Set for Decision under Uncertainty. Symmetry 2018, 10, 621. https://doi.org/10.3390/sym10110621
Abu Qamar M, Hassan N. Generalized Q-Neutrosophic Soft Expert Set for Decision under Uncertainty. Symmetry. 2018; 10(11):621. https://doi.org/10.3390/sym10110621
Chicago/Turabian StyleAbu Qamar, Majdoleen, and Nasruddin Hassan. 2018. "Generalized Q-Neutrosophic Soft Expert Set for Decision under Uncertainty" Symmetry 10, no. 11: 621. https://doi.org/10.3390/sym10110621