Tropical Protected Areas Under Increasing Threats from Climate Change and Deforestation
Abstract
1. Introduction
2. Materials and Methods
2.1. Protected Areas
2.2. Deforestation Risk
2.3. Climate Exposure
2.4. Methods
3. Results & Discussion
3.1. Global Patterns
3.2. Protected Areas
3.3. Caveats
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Rodrigues, A.S.L.; Andelman, S.J.; Bakarr, M.I.; Boitani, L.; Brooks, T.M.; Cowling, R.M.; Fishpool, L.D.C.; da Fonseca, G.A.B.; Gaston, K.J.; Hoffmann, M.; et al. Effectiveness of the global protected area network in representing species diversity. Nature 2004, 428, 9–12. [Google Scholar] [CrossRef] [PubMed]
- UNEP-WCMC; IUCN. Protected Planet Report 2016; UNEP-WCMC: Cambridge, UK; IUCN: Gland, Switzerland, 2016; Available online: https://wdpa.s3.amazonaws.com/Protected_Planet_Reports/2445 Global Protected Planet 2016_WEB.pdf (accessed on July 30 2016).
- Dudley, N.; Stolton, S.; Belokurov, A.; Krueger, L.; Lopoukhine, N.; MacKinnon, K.; Sandwith, T.; Sekhran, N. Natural Solutions: Protected Areas Helping People Cope with Climate Change; IUCNWCPA, TNC, UNDP, WCS, The World Bank and WWF: Gland, Switzerland; Washington, DC, USA; New York, NY, USA, 2010; Available online: https://www.iucn.org/downloads/natural_solutions.pdf (accessed on 31 September 2017).
- Hurlbert, A.H.; Jetz, W. Species richness, hotspots, and the scale dependence of range maps in ecology and conservation. Proc. Natl. Acad. Sci. USA 2007, 104, 13384–13389. [Google Scholar] [CrossRef] [PubMed]
- Dawson, T.P.; Jackson, S.; House, J.I.; Prentice, I.C.; Mace, G.M. Beyond Predictions: Biodiversity Conservation in a Changing Climate. Science 2011, 332, 53–58. [Google Scholar] [CrossRef] [PubMed]
- Bruner, A.G.; Gullison, R.E.; Rice, R.E.; da Fonseca, G.A. Effectiveness of parks in protecting tropical biodiversity. Science 2001, 291, 125–128. [Google Scholar] [CrossRef] [PubMed]
- Lele, S.; Wilshusen, P.; Brockington, D.; Seidler, R.; Bawa, K. Beyond exclusion: Alternative approaches to biodiversity conservation in the developing tropics. Curr. Opin. Environ. Sustain. 2010, 2, 94–100. [Google Scholar] [CrossRef]
- Laurance, W.F.; Useche, D.C.; Rendeiro, J.; Kalka, M.; Bradshaw, C.J.A.; Sloan, S.P.; Laurance, S.G.; Campbell, M.; Abernethy, K.; Alvarez, P.; et al. Averting biodiversity collapse in tropical forest protected areas. Nature 2012, 489, 290–293. [Google Scholar] [CrossRef] [PubMed]
- Pringle, R.M. Upgrading protected areas to conserve wild biodiversity. Nature 2017, 546, 91–99. [Google Scholar] [CrossRef] [PubMed]
- Geldman, J.; Barnes, M.; Coad, L.; Craigie, I.D.; Hockings, M.; Burgess, N.D. Effectiveness of terrestrial protected areas in reducing habitat loss and population declines. Biol. Conserv. 2013, 161, 230–238. [Google Scholar] [CrossRef]
- Walther, G.-R.; Post, E.; Convey, P.; Menzel, A.; Parmesan, C.; Beebee, T.J.C.; Fromentin, J.-M.; Hoegh-Guldberg, O.; Bairlein, F. Ecological responses to recent climate change. Nature 2002, 416, 389–395. [Google Scholar] [CrossRef] [PubMed]
- Parmesan, C.; Yohe, G. A globally coherent fingerprint of climate change impacts across natural systems. Nature 2003, 421, 37–42. [Google Scholar] [CrossRef] [PubMed]
- Root, T.L.; Price, J.T.; Hall, K.R.; Schneider, S.H. Fingerprints of global warming on wild animals and plants. Nature 2003, 421, 57–60. [Google Scholar] [CrossRef] [PubMed]
- Thomas, C.D.; Cameron, A.; Green, R.E.; Bakkenes, M.; Beaumont, L.J.; Collingham, Y.C.; Erasmus, B.F.N.; de Siqueira, M.F.; Grainger, A.; Hannah, L.; et al. Extinction risk from climate change. Nature 2004, 427, 145–148. [Google Scholar] [CrossRef] [PubMed]
- Segurado, P.; Araújo, M.B. An evaluation of methods for modelling species distributions. J. Biogeogr. 2004, 31, 1555–1568. [Google Scholar] [CrossRef]
- Loarie, S.R.; Duffy, P.B.; Hamilton, H.; Asner, G.P.; Field, C.B.; Ackerly, D.D. The velocity of climate change. Nature 2009, 462, 1052–1055. [Google Scholar] [CrossRef] [PubMed]
- Davies, T.J.; Purvis, A.; Gittleman, J.L. Quaternary climate change and the geographic ranges of mammals. Am. Nat. 2009, 174, 297–307. [Google Scholar] [CrossRef] [PubMed]
- Corvalen, C.; Hales, S.; McMichael, A.J.; Bulter, C. Ecosystems and Human Well-Being, Health Synthesis; Wolrd Health Organization: Geneva, Switzerland, 2005. [Google Scholar]
- Urban, M.C. Accelerating extinction risk from climate change. Science 2015, 348, 571–573. [Google Scholar] [CrossRef] [PubMed]
- Pimm, S.L.; Raven, P. Extinction by numbers. Nature 2000, 403, 843–845. [Google Scholar] [CrossRef] [PubMed]
- Keenan, R.J.; Reams, G.A.; Achard, F.; De Freitas, J.V.; Grainger, A.; Lindquist, E. Forest Ecology and Management Dynamics of global forest area: Results from the FAO Global Forest Resources Assessment 2015. For. Ecol. Manag. 2015, 352, 9–20. [Google Scholar] [CrossRef]
- Spracklen, B.D.; Kalamandeen, M.; Galbraith, D.; Gloor, E.; Spracklen, D.V. A Global Analysis of Deforestation in Moist Tropical Forest Protected Areas. PLoS ONE 2015, 342, e0143886. [Google Scholar] [CrossRef] [PubMed]
- Keppel, G.; Van Niel, K.P.; Wardell-johnson, G.W.; Yates, C.J.; Byrne, M.; Mucina, L.; Schut, A.G.T.; Hopper, S.D.; Franklin, S.E. Refugia: Identifying and understanding safe havens for biodiversity under climate change. Glob. Ecol. Biogeogr. 2012, 21, 393–404. [Google Scholar] [CrossRef]
- Alagador, D.; Cerdeira, J.O. Climate change, species range shifts and dispersal corridors: An evaluation of spatial conservation models. Methods Ecol. Evolut. 2016, 7, 853–866. [Google Scholar] [CrossRef]
- Hole, D.G.; Willis, S.; Pain, D.J.; Fishpool, L.D.; Butchart, S.H.M.; Collingham, Y.C.; Rahbek, C.; Huntley, B. Projected impacts of climate change on a continent-wide protected area network. Ecol. Lett. 2009, 12, 420–431. [Google Scholar] [CrossRef] [PubMed]
- Nuñez, T.A.; Lawler, J.J.; Mcrae, B.H.; Pierce, J.D.; Krosby, M.; Kavanagh, D.M.; Singleton, P.H.; Tewksbury, J.J. Connectivity Planning to Address Climate Change. Conserv. Biol. 2013, 27, 407–416. [Google Scholar]
- Pacifici, A.M.; Foden, W.B.; Visconti, P.; Watson, J.E.M.; Butchart, S.H.M.; Kovacs, K.M.; Scheffers, B.R.; Hole, D.G.; Martin, T.G.; Akçakaya, H.R.; et al. Assessing species vulnerability to climate change. Nat. Clim. Chang. 2015, 5, 215–225. [Google Scholar] [CrossRef]
- Hansen, A.J.; DeFries, R. Ecological mechanisms linking protected areas to surrounding lands. Ecol. Appl. 2007, 17, 974–988. [Google Scholar] [CrossRef] [PubMed]
- Harper, G.J.; Steininger, M.K.; Tucker, C.J.; Juhn, D.; Hawkins, F. Fifty years of deforestation and forest fragmentation in Madagascar. Environ. Conserv. 2007, 34, 325–333. [Google Scholar] [CrossRef]
- Hansen, M.C.; Potapov, P.V.; Moore, R.; Hancher, M.; Turubanova, S.A.; Tyukavina, A.; Thau, D.; Stehman, S.V.; Goetz, S.J.; Loveland, T.R.; et al. High-resolution global maps of 21st-century forest cover change. Science 2013, 342, 850–853. [Google Scholar] [CrossRef] [PubMed]
- Burgess, N.D.; Malugu, I.; Sumbi, P.; Kashindye, A.; Kijazi, A.; Tabor, K.; Mbilinyi, B.; Kashaigili, J.; Maxwell Wright, T.; Gereau, R.E.; et al. Two decades of change in state, pressure and conservation responses in the coastal forest biodiversity hotspot of Tanzania. ORYX 2017, 51, 77–86. [Google Scholar] [CrossRef]
- Tabor, K.; Burgess, N.D.; Mbilinyi, B.P.; Kashaigili, J.J.; Steininger, M.K. Forest and woodland cover and change in coastal Tanzania and Kenya. J. East Afr. Nat. Hist. 2010, 99, 19–45. [Google Scholar] [CrossRef]
- Eastman, J.R.; Solórzano, L.A.; van Fossen, M. Transition Potential Modeling for Land-Cover Change; GIS, Spatial Analysis, and Modeling; Maguire, J.D., Batty, M., Goodchild, M., Eds.; ESRI Press: Redlands, CA, USA, 2005; pp. 357–385. [Google Scholar]
- Hijmans, R.J.; Graham, C.H. The ability of climate envelope models to predict the effect of climate change on species distributions. Glob. Chang. Biol. 2006, 12, 2272–2281. [Google Scholar] [CrossRef]
- Foden, W.B.; Butchart, S.H.M.; Stuart, S.N.; Vié, J.-C.; Akçakaya, H.R.; Angulo, A.; DeVantier, L.M.; Gutsche, A.; Turak, E.; Cao, L.; et al. Identifying the World’s Most Climate Change Vulnerable Species: A Systematic Trait-Based Assessment of all Birds, Amphibians and Corals. PLoS ONE 2013, 8, e65427. [Google Scholar] [CrossRef] [PubMed]
- Araujo, M.B.; Cabeza, M.; Thuiller, W.; Hannah, L.; Williams, P.H. Would climate change drive species out of reserves? An assessment of existing reserve-selection methods. Glob. Chang. Biol. 2004, 10, 1618–1626. [Google Scholar] [CrossRef]
- Hannah, L.; Midgley, G.; Hughes, G.; Bomhard, B. The View from the Cape: Extinction Risk, Protected Areas, and Climate Change. Bioscience 2005, 55, 231–242. [Google Scholar] [CrossRef]
- Hewson, J.; Ashkenazi, E.; Andelman, S.; Steininger, M. Projected impacts of climate change on protected areas. Biodiversity 2008, 9, 100–105. [Google Scholar] [CrossRef]
- Garcia, R.A.; Cabeza, M.; Rahbek, C.; Araújo, M.B. Change and Their Implications for Biodiversity Multiple Dimensions of Climate. Science 2014, 344, 1247579. [Google Scholar] [CrossRef] [PubMed]
- Williams, J.W.; Jackson, S.T.; Kutzbach, J.E. Projected distributions of novel and disappearing climates by 2100 AD. Proc. Natl. Acad. Sci. USA 2007, 104, 5738–5742. [Google Scholar] [CrossRef] [PubMed]
- Ordonez, A.; Williams, J.W.; Svenning, J. Mapping climatic mechanisms likely to favour the emergence of novel communities. Nat. Clim. Chang. 2016, 6, 1104–1109. [Google Scholar] [CrossRef]
- Radeloff, V.C.; Williams, J.W.; Bateman, B.L.; Burke, K.D.; Carter, S.K.; Childress, E.S.; Cromwell, K.J.; Gratton, C.; Hasley, A.O.; Kraemer, B.M.; et al. The rise of novelty in ecosystems. Ecol. Appl. 2015, 25, 2051–2068. [Google Scholar] [CrossRef] [PubMed]
- Jetz, W.; Wilcove, D.S.; Dobson, A.P. Projected Impacts of Climate and Land-Use Change on the Global Diversity of Birds. PLoS Biol. 2007, 5, e157. [Google Scholar] [CrossRef] [PubMed]
- Hansen, A.; Neilson, R.; Dale, V.; Flather, C.; Iverson, L.; Currie, D.J.; Shafer, S.; Cook, R.; Bartlein, P.J. Global change in forests: Responses of species, communities, and biomes. Bioscience 2001, 51, 765–779. [Google Scholar] [CrossRef]
- Dale, V.H. The Relationship between Land-Use Change and Climate Change. Ecol. Appl. 1997, 7, 753–769. [Google Scholar] [CrossRef]
- Asner, G.P.; Loarie, S.R.; Heyder, U. Combined effects of climate and land-use change on the future of humid tropical forests. Conserv. Lett. 2010, 3, 395–403. [Google Scholar] [CrossRef]
- Lawler, J.J.; Ruesch, A.S.; Olden, J.D.; McRae, B.H. Projected climate-driven faunal movement routes. Ecol. Lett. 2013, 16, 1014–1022. [Google Scholar] [CrossRef] [PubMed]
- M.E.A. Current State & trends assessment. In Millennium Ecosystem Assessment; Island Press: Washington, DC, USA, 2005. [Google Scholar]
- Fischlin, A.; Midgley, G.F.; Price, J.T.; Leemans, R.; Gopal, B.; Turley, C.; Rounsevell, M.; Dube, P.; Tarazona, J.; Velichko, A. Ecosystems, their properties, goods, and services. In Climate Change 2007: Impacts, Adaptation and Vulnerability Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Parry, M., Canziani, O., Palutikof, J., van der Linden, P., Hanson, C., Eds.; Cambridge University Press: Cambridge, UK, 2007; pp. 211–272. [Google Scholar]
- Hoffmann, M.; Hilton-taylor, C.; Angulo, A.; Böhm, M.; Brooks, T.M.; Butchart, S.H.M.; Carpenter, K.E.; Chanson, J.; Collen, B.; Cox, N.A.; et al. The Impact of Conservation on the Status of the World’s Vertebrates. Science 2010, 330, 1503–1509. [Google Scholar] [CrossRef] [PubMed]
- IUCN; UNEP-WCMC. The World Database on Protected Areas (WDPA). Available online: www.protectedplanet.net (accessed on 31 July 2017).
- Olson, D.M.; Dinerstein, E.; Wikramanayake, E.D.; Burgess, N.D.; Powell, G.V.N.; Underwood, E.C.; D’amico, J.O.; Itoua, I.; Strand, H.E.; Morrison, J.C.; et al. Terrestrial Ecoregions of the World: A New Map of Life on Earth. Bioscience 2001, 51, 933–938. [Google Scholar] [CrossRef]
- Hewson, J.; Crema, S.; González-Roglich, M.; Tabor, K.; Harvey, C. Projecting global and continental forest loss: New high-resolution datasets of deforestation risk. Environ. Res. Lett. submitted.
- FAO. FRA 2015 Terms and Definitions; Forest Resources Assessment Working Paper 180; FAO: Rome, Italy, 2015. [Google Scholar]
- NGA. Vector Map Level 0 (Digital Chart of the World); National Geospatial-Intelligence Agency: Springfield, VA, USA, 2000.
- Arino, O.; Ramos Perez, J.J.; Kalogirou, V.; Bontemps, S.; Defourny, P.; Van Bogaert, E. Global Land Cover Map for 2009 (GlobCover 2009). PANGAEA: European Space Agency (ESA) & Université catholique de Louvain (UCL): 2012. Available online: https://doi.org/10.1594/PANGAEA.787668 (accessed on 27 July 2018).
- USGS; NGA. Global Multi-Resolution Terrain Elevation Data 2010 (GMTED2010); U.S. Geological Survey: Reston, VA, USA, 2011.
- Avitabile, V.; Herold, M.; Heuvelink, G.B.M.; Lewis, S.L.; Phillips, O.L.; Asner, G.P.; Armston, J.; Ashton, P.S.; Banin, L.; Bayol, N.; et al. An integrated pan-tropical biomass map using multiple reference datasets. Glob. Chang. Biol. 2016, 22, 1406–1420. [Google Scholar] [CrossRef] [PubMed]
- WCS; CIESIN. Last of the Wild Project, Version 2; Global Hum; NASA SEDAC: Palisades, NY, USA, 2005.
- Zabel, F.; Putzenlechner, B.; Mauser, W. Global agricultural land resources—A high resolution suitability evaluation and its perspectives until 2100 under climate change conditions. PLoS ONE 2014, 9, e107522. [Google Scholar] [CrossRef] [PubMed]
- Siebert, S.; Henrich, V.; Frenken, K.; Burke, J. Global Map of Irrigation Areas Version 5; Rheinische Friedrich-Wilhelms-University: Bonn, Germany; Food and Agriculture Organization of the United Nations: Rome, Italy, 2013. [Google Scholar]
- Naidoo, R.T.I. Global-scale mapping of economic benefits from agricultural lands: Implications for conservation priorities. Biol. Conserv. 2007, 140, 40–49. [Google Scholar] [CrossRef]
- Hijmans, R.J.; Cameron, S.E.; Parra, J.L.; Jones, P.G.; Jarvis, A. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 2005, 1978, 1965–1978. [Google Scholar] [CrossRef]
- Tabor, K.; Williams, J.W. Globally downscaled climate projections for assessing the conservation impacts of climate change. Ecol Appl. 2010, 20, 554–565. [Google Scholar] [CrossRef] [PubMed]
- Moss, R.H.; Edmonds, J.A.; Hibbard, K.A.; Manning, M.R.; Rose, S.K.; Van Vuuren, D.P.; Carter, T.R.; Emori, S.; Kainuma, M.; Kram, T.; et al. The next generation of scenarios for climate change research and assessment. Nature 2010, 463, 747–756. [Google Scholar] [CrossRef] [PubMed]
- Mahony, C.R.; Cannon, A.J.; Wang, T.; Aitken, S.N. A closer look at novel climates: New methods and insights at continental to landscape scales. Glob. Chang. Biol. 2017, 23, 3934–3955. [Google Scholar] [CrossRef] [PubMed]
- Nepstad, D.; McGrath, D.; Stickler, C.; Alencar, A.; Azevedo, A.; Swette, B.; Bezerra, T.; DiGiano, M.; Shimada, J.; da Motta, R.S.; et al. Slowing Amazon deforestation through public policy and interventions in beef and soy supply chains. Science 2014, 344, 1118–1123. [Google Scholar] [CrossRef] [PubMed]
- Austin, K.; González-Roglich, M.; Schaffer-Smith, D.; Schwantes, A.; Swenson, J. Trends in size of tropical deforestation events signal increasing dominance of industrial-scale drivers. Environ. Res. Lett. 2017, 12, 054009. [Google Scholar] [CrossRef]
- Bruner, A.G.; Gullison, R.E.; Balmford, A. Financial Costs and Shortfalls of Managing and Expanding Protected-Area Systems in Developing Countries. Bioscience 2004, 54, 1119–1126. [Google Scholar] [CrossRef]
- Jones, K.R.; Venter, O.; Fuller, R.A.; Allan, J.R.; Maxwell, S.L.; Negret, P.J.; Watson, J.E.M. One-third of global protected land is under intense human pressure. Science 2018, 360, 788–791. [Google Scholar] [CrossRef] [PubMed]
- Angelsen, A.; Brown, S.; Loisel, C.; Peskett, L.; Streck, C.; Zarin, D. Reducing Emissions from Deforestation and Forest Degradation (REDD): An Options Assessment Report. 2009. Available online: http://www.redd-oar.org/links/REDD-OAR_en.pdf (accessed on 27 July 2018).
- Schaafsma, M.; Morse-Jones, S.; Posen, P.; Swetnam, R.D.; Balmford, A.; Bateman, I.J.; Burgess, N.D.; Chamshama, S.A.O.; Fisher, B.; Freeman, T.; et al. The importance of local forest benefits: Economic valuation of Non-Timber Forest Products in the Eastern Arc Mountains in Tanzania. Glob. Environ. Chang. Policy Dimens. 2014, 24, 295–305. [Google Scholar] [CrossRef]
- Johnstone, J.F.; Allen, C.D.; Franklin, J.F.; Frelich, L.E.; Harvey, B.J.; Higuera, P.E.; Mack, M.C.; Meentemeyer, P.K.; Metz, M.R.; Perry, G.L.W.; et al. Changing disturbance regimes, ecological memory, and forest resilience. Front Ecol Environ. 2016, 14, 369–378. [Google Scholar] [CrossRef]
- Pratihast, A.K.; DeVries, B.; Avitabile, V.; de Bruin, S.; Herold, M.; Bergsma, A. Design and Implementation of an Interactive Web-Based Near Real-Time Forest Monitoring System. PLoS ONE 2016, 11, e0150935. [Google Scholar] [CrossRef] [PubMed]
- Davies, D.; Murphy, K.; Michael, K.; Becker-Reshef, I.; Justice, C.; Boller, R.; Braun, S.A.; Schmaltz, J.E.; Wong, M.M.; Pasch, A.N.; et al. The use of NASA LANCE imagery and data for near real-time applications. In Time-Sensitive Remote Sensing; Springer: New York, NY, USA, 2015; pp. 165–182. [Google Scholar]
- Petrica, L. An evaluation of low-power microphone array sound source localization for deforestation detection. Appl. Acoust. 2016, 1, 162–169. [Google Scholar] [CrossRef]
- Musinsky, J.; Tabor, K.; Cano, C.A.; Ledezma, J.C.; Mendoza, E.; Rasolohery, A.; Sajudin, E.R. Conservation impacts of a near real-time forest monitoring and alert system for the tropics. Remote Sens. Ecol. Conserv. 2018, 1–8. [Google Scholar] [CrossRef]
- Mora, C.; Frazier, A.G.; Longman, R.J.; Dacks, R.S.; Walton, M.M.; Tong, E.J.; Sanchez, J.J.; Kaiser, L.R.; Stender, Y.O.; Anderson, J.M.; et al. The projected timing of climate departure from recent variability. Nature 2013, 502, 183–187. [Google Scholar] [CrossRef] [PubMed]
- Wiens, J.A.; Seavy, N.E.; Jongsomjit, D. Protected areas in climate space: What will the future bring? Biol. Conserv. 2011, 144, 2119–2125. [Google Scholar] [CrossRef]
- Asner, G.P.; Tupayachi, R. Accelerated losses of protected forests from gold mining in the Peruvian Amazon. Environ. Res. Lett. 2017, 12, 094004. [Google Scholar] [CrossRef]
- Beaudrot, L.; Ahumada, J.A.; Brien, T.O.; Alvarez-loayza, P.; Boekee, K.; Campos-arceiz, A.; Eichberg, D.; Espinosa, S.; Fegraus, E.; Fletcher, C.; et al. Standardized Assessment of Biodiversity Trends in Tropical Forest Protected Areas: The End is not in Sight. PLoS Biol. 2016, 14, e1002357. [Google Scholar] [CrossRef] [PubMed]
Variable | Source |
---|---|
Distance to railroads | Vmap0 [55] |
Distance to roads | Vmap0 [55] |
Distance to trails | Vmap0 [55] |
Distance to urban areas | [56] |
Elevation | Global Multi-resolution Terrain Elevation Data [57] |
Slope | Derived from Elevation |
Above Ground Biomass | GeoCarbon [58] |
Human Influence Index | [59] |
Crop suitability | GLUES [60] |
Irrigation area | FAO [61] |
Global Opportunity Cost | [62] |
Annual Precipitation | Bioclim [63] |
Annual Mean temperature | Bioclim [63] |
Protected Areas | [51] |
Ecoregion Biomes | [52] |
Risk Category | Threshold | Area (Mha) | Percent of Total Area of PAs |
---|---|---|---|
Highest Deforestation Risk | >0.41 | 29.0 | 6% |
Lowest Deforestation Risk | <0.07 | 312.5 | 61% |
Highest Disappearing Climate Risk | >2.00 | 62.3 | 12% |
Lowest Disappearing Climate Risk | <1.10 | 133.7 | 26% |
Highest Novel Climate Risk | >2.41 | 165.3 | 32% |
Lowest Novel Climate Risk | <1.18 | 74.9 | 15% |
Continent | Number of PAs | Total Area (Mha) | Percent of PA’s | Percent by Area |
---|---|---|---|---|
Africa | 1444 | 64.6 | 19% | 13% |
Asia | 2079 | 70.8 | 27% | 14% |
Australia | 370 | 4.4 | 5% | 1% |
North America | 1290 | 26.2 | 17% | 5% |
South America | 2489 | 347.0 | 32% | 68% |
Total | 7672 | 513.0 | 100% | 100% |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tabor, K.; Hewson, J.; Tien, H.; González-Roglich, M.; Hole, D.; Williams, J.W. Tropical Protected Areas Under Increasing Threats from Climate Change and Deforestation. Land 2018, 7, 90. https://doi.org/10.3390/land7030090
Tabor K, Hewson J, Tien H, González-Roglich M, Hole D, Williams JW. Tropical Protected Areas Under Increasing Threats from Climate Change and Deforestation. Land. 2018; 7(3):90. https://doi.org/10.3390/land7030090
Chicago/Turabian StyleTabor, Karyn, Jennifer Hewson, Hsin Tien, Mariano González-Roglich, David Hole, and John W. Williams. 2018. "Tropical Protected Areas Under Increasing Threats from Climate Change and Deforestation" Land 7, no. 3: 90. https://doi.org/10.3390/land7030090
APA StyleTabor, K., Hewson, J., Tien, H., González-Roglich, M., Hole, D., & Williams, J. W. (2018). Tropical Protected Areas Under Increasing Threats from Climate Change and Deforestation. Land, 7(3), 90. https://doi.org/10.3390/land7030090