Responses of Vegetation to Atmospheric and Soil Water Constraints Under Increasing Water Stress in China’s Three-North Shelter Forest Program Region
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Collection
2.3. Method
2.3.1. Drought Indices
2.3.2. Standardized Vegetation Indices
2.3.3. Correlation, Trend, and Attribution Analysis
2.3.4. Water Deficit Response Time and Water Surplus Period
3. Results
3.1. Spatial Correlations Between Vegetation and Water Availability
3.2. Temporal Variations in Correlations Between Vegetation and Water Availability
3.3. Vegetation Response Time to Water Availability
3.4. Attribution of Meteorological Factors to Vegetation–Water Availability Relationship
4. Discussion
4.1. Spatial Patterns and Temporal Trends of Vegetation Response to Water Constraints
4.2. Vegetation Response Time to Water Constraints
4.3. Attribution of Climatic Factors
4.4. Implications and Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Porporato, A.; D’odorico, P.; Laio, F.; Ridolfi, L.; Rodriguez-Iturbe, I. Ecohydrology of water-controlled ecosystems. Adv. Water Resour. 2002, 25, 1335–1348. [Google Scholar] [CrossRef]
- Novick, K.A.; Ficklin, D.L.; Stoy, P.C.; Williams, C.A.; Bohrer, G.; Oishi, A.C.; Papuga, S.A.; Blanken, P.D.; Noormets, A.; Sulman, B.N.; et al. The increasing importance of atmospheric demand for ecosystem water and carbon fluxes. Nat. Clim. Change 2016, 6, 1023–1027. [Google Scholar] [CrossRef]
- Huang, J.; Yu, H.; Guan, X.; Wang, G.; Guo, R. Accelerated dryland expansion under climate change. Nat. Clim. Change 2016, 6, 166–171. [Google Scholar] [CrossRef]
- Zhou, S.; Williams, A.P.; Lintner, B.R.; Berg, A.M.; Zhang, Y.; Keenan, T.F.; Cook, B.I.; Hagemann, S.; Seneviratne, S.I.; Gentine, P. Soil moisture–atmosphere feedbacks mitigate declining water availability in drylands. Nat. Clim. Change 2021, 11, 38–44. [Google Scholar] [CrossRef]
- Wu, D.; Zhao, X.; Liang, S.; Zhou, T.; Huang, K.; Tang, B.; Zhao, W. Time-lag effects of global vegetation responses to climate change. Glob. Change Biol. 2015, 21, 3520–3531. [Google Scholar] [CrossRef]
- Jiao, W.; Wang, L.; Smith, W.K.; Chang, Q.; Wang, H.; D’Odorico, P. Observed increasing water constraint on vegetation growth over the last three decades. Nat. Commun. 2021, 12, 3777. [Google Scholar] [CrossRef]
- Konapala, G.; Mishra, A.K.; Wada, Y.; Mann, M.E. Climate change will affect global water availability through compounding changes in seasonal precipitation and evaporation. Nat. Commun. 2020, 11, 3044. [Google Scholar] [CrossRef]
- Lai, C.; Sun, H.; Wu, X.; Li, J.; Wang, Z.; Tong, H.; Feng, J. Water availability may not constrain vegetation growth in northern hemisphere. Agric. Water Manag. 2024, 291, 108649. [Google Scholar] [CrossRef]
- Sun, H.; Cheng, Y.; Liu, L.; An, Q.; Zhang, H. Water deficit is increasingly limiting vegetation productivity in China. Ecol. Indic. 2025, 177, 113775. [Google Scholar] [CrossRef]
- Rajendran, A.; Ramlal, A.; Harika, A.; Subramaniam, S.; Raju, D.; Lal, S.K. Waterlogging stress mechanism and membrane transporters in soybean (Glycine max (L.) Merr.). Plant Physiol. Biochem. 2025, 220, 109579. [Google Scholar] [CrossRef]
- Cui, S.; Gao, J.; Sun, F.; Li, G.; Che, Y. Comparison of Vegetation Responses to Diverse Water Sources in the Yangtze River Basin: Insights from Meteorological, Hydrological, and Agricultural Drought. Ecol. Indic. 2025, 175, 113524. [Google Scholar] [CrossRef]
- Smith, T.; Boers, N. Global vegetation resilience linked to water availability and variability. Nat. Commun. 2023, 14, 498. [Google Scholar] [CrossRef]
- Das, P.K.; Chandra, S.; Das, D.K.; Midya, S.K.; Dadhwal, V.K. Understanding the Interactions between Meteorological and Soil Moisture Drought over Indian Region. J. Earth Syst. Sci. 2020, 129, 197. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, T. Soil moisture drives the spatiotemporal patterns of asymmetry in vegetation productivity responses across China. Sci. Total Environ. 2023, 855, 158819. [Google Scholar]
- He, L.; Guo, J.; Liu, X.; Yang, W.; Chen, L.; Jiang, Q. Exploring the multifaceted reason for deficits in soil water within different soil layers in China’s drylands. J. Environ. Manag. 2025, 373, 123634. [Google Scholar] [CrossRef]
- Afshar, M.H.; Bulut, B.; Duzenli, E.; Amjad, M.; Yilmaz, M.T. Global spatiotemporal consistency between meteorological and soil moisture drought indices. Agric. For. Meteorol. 2022, 316, 108848. [Google Scholar] [CrossRef]
- Li, Y.; Zhuang, Q.; Zhao, H.; Zhang, W.; Cai, P.; Zhang, Y.; Lv, J. Evaluation of the Resistance and Resilience of Terrestrial Ecosystems to Drought in Southwest China. J. Hydrol. 2025, 646, 132318. [Google Scholar] [CrossRef]
- Wen, Y.; Liu, X.; Xin, Q.; Wu, J.; Xu, X.; Pei, F. Cumulative effects of climatic factors on terrestrial vegetation growth. J. Geophys. Res. Biogeosci. 2019, 124, 789–806. [Google Scholar] [CrossRef]
- Yan, Y.; Wang, G.; An, Y.; Zhang, X.; Xue, B.; Wu, J. Spatiotemporal evolution of time-lagged vegetation responses to moisture conditions and the influencing factors in a highly human-impacted area in China. Ecol. Inform. 2025, 90, 103335. [Google Scholar] [CrossRef]
- Vicente-Serrano, S.M.; Beguería, S.; López-Moreno, J.I. A multiscalar drought index sensitive to global warming: The standardized precipitation evapotranspiration index. J. Clim. 2010, 23, 1696–1718. [Google Scholar] [CrossRef]
- Li, M.; Qin, Y.; Zhang, T.; Zhou, X.; Yi, G.; Bie, X. Climate change and anthropogenic activity co-driven vegetation coverage increase in the three-north shelter forest region of China. Remote Sens. 2023, 15, 6. [Google Scholar] [CrossRef]
- Chen, M.; Parton, W.; Hartman, M.; Del Grosso, S.; Smith, W.; Knapp, A.; Lutz, S.; Derner, J. Assessing precipitation, evapotranspiration, and NDVI as controls of US Great Plains plant production. Ecosphere 2019, 10, e02889. [Google Scholar] [CrossRef]
- Zhai, J.; Wang, L.; Liu, Y.; Wang, C.; Mao, X. Assessing the effects of China’s Three-North Shelter Forest Program over 40 years. Sci. Total Environ. 2023, 857, 159354. [Google Scholar] [CrossRef] [PubMed]
- Pang, J.; Xu, H.; Zhang, Q.; Zhang, Y.; Zhang, Z. Stand Characteristics Regulate Forest Water Use Efficiency in the Three-North Shelterbelt Forest Program Region of China. Environ. Res. Lett. 2024, 19, 114028. [Google Scholar] [CrossRef]
- Jia, X.; Luo, Y.; Shao, M. Soil moisture decline due to afforestation across the Loess Plateau, China. J. Hydrol. 2017, 546, 113–122. [Google Scholar] [CrossRef]
- Chen, H.S.; Shao, M.A.; Li, Y.Y. Soil desiccation in the Loess Plateau of China. Geoderma 2008, 143, 91–100. [Google Scholar] [CrossRef]
- Wei, X.; Huang, S.; Huang, Q.; Liu, D.; Leng, G. Analysis of Vegetation Vulnerability Dynamics and Driving Forces to Multiple Drought Stresses in a Changing Environment. Remote Sens. 2022, 14, 4231. [Google Scholar] [CrossRef]
- Tian, R.; Li, J.; Zheng, J.; Liu, L.; Han, W.; Liu, Y. Changes in vegetation phenology and its response to different layers of soil moisture in the dry zone of Central Asia, 1982–2022. J. Hydrol. 2025, 646, 132314. [Google Scholar] [CrossRef]
- Xu, H.; Shi, X.; Cheng, J.; Li, M. Sensitivity and vulnerability of vegetation to meteorological drought in Yunnan Province, southwest China. J. Environ. Manag. 2025, 382, 125444. [Google Scholar] [CrossRef]
- Kendall, M.G. Rank Correlation Measure; Charles Griffin: London, UK, 1975. [Google Scholar]
- Kreuzwieser, J.; Rennenberg, H. Molecular and physiological responses of trees to waterlogging stress. Plant Cell Environ. 2015, 37, 2245–2259. [Google Scholar] [CrossRef]
- Liang, H.; Xue, Y.; Li, Z.; Gao, G.; Liu, G. Afforestation may accelerate the depletion of deep soil moisture on the loess plateau: Evidence from a meta-analysis. Land Degrad. Dev. 2022, 33, 3829–3840. [Google Scholar] [CrossRef]
- Li, B.; Zhang, W.; Li, S. Severe depletion of available deep soil water induced by revegetation on the arid and semiarid Loess Plateau. For. Ecol. Manag. 2021, 491, 119156. [Google Scholar] [CrossRef]
- Gao, X.D.; Li, H.C.; Zhao, X.N.; Ma, W.; Wu, P.T. Identifying a suitable revegetation technique for soil restoration on water-limited and degraded land: Considering both deep soil moisture deficit and soil organic carbon sequestration. Geoderma 2018, 319, 61–69. [Google Scholar] [CrossRef]
- Wei, X.; He, W.; Zhou, Y.; Ju, W.; Xiao, J.; Li, X.; Liu, Y.; Xu, S.; Bi, W.; Zhang, X.; et al. Global assessment of lagged and cumulative effects of drought on grassland gross primary production. Ecol. Indic. 2022, 136, 108646. [Google Scholar] [CrossRef]
- Su, Y.; Yang, X.; Gentine, P. Observed strong atmospheric water constraints on forest photosynthesis using eddy covariance and satellite-based data across the Northern Hemisphere. Int. J. Appl. Earth Obs. Geoinform. 2022, 110, 102808. [Google Scholar] [CrossRef]
- Zhu, Y.; Li, J.; Xia, X. Spatial and temporal characteristics of drought in the Mu Us Sandy Land based on the Standardized Precipitation Index. Front. Environ. Sci. 2024, 12, 1349228. [Google Scholar] [CrossRef]
- Wang, X.; Song, J.; Xiao, Z.; Wang, J.; Hu, F. Desertification in the Mu Us Sandy Land in China: Response to climate change and human activity from 2000 to 2020. Geogr. Sustain. 2022, 3, 177–189. [Google Scholar] [CrossRef]
- Liu, X.; Lai, Q.; Yin, S.; Bao, Y.; Qing, S.; Mei, L.; Bu, L. Exploring sandy vegetation sensitivities to water storage in China’s arid and semi-arid regions. Ecol. Indic. 2022, 136, 108711. [Google Scholar] [CrossRef]
- Sterling, S.; Ducharne, A.; Polcher, J. The impact of global land-cover change on the terrestrial water cycle. Nat. Clim. Change 2013, 3, 385–390. [Google Scholar] [CrossRef]
- Jiang, F.; Xie, X.; Liang, S.; Wang, Y.; Zhu, B.; Zhang, X.; Chen, Y. Loess Plateau evapotranspiration intensified by land surface radiative forcing associated with ecological restoration. Agric. For. Meteorol. 2021, 311, 108669. [Google Scholar] [CrossRef]
- Donohue, R.J.; McVicar, T.R.; Roderick, M.L. Assessing the ability of potential evaporation formulations to capture the dynamics in evaporative demand within a changing climate. J. Hydrol. 2010, 386, 186–197. [Google Scholar] [CrossRef]
- Bai, Y.; Liu, M.; Zhou, J.; Guo, Q.; Wu, G.; Li, S. Diverse responses of surface biogeophysical parameters to accelerated development and senescence of vegetation on the Mongolian Plateau. Sci. Total Environ. 2024, 943, 173727. [Google Scholar] [CrossRef]
- Liu, X.; Cai, L.; Li, M.; Yan, Y.; Chen, H.; Wang, F. Why does afforestation policy lead to a drying trend in soil moisture on the loess plateau? Sci. Total Environ. 2024, 953, 175912. [Google Scholar] [CrossRef] [PubMed]
- Yuan, W.; Zheng, Y.; Piao, S.; Ciais, P.; Lombardozzi, D.; Wang, Y.; Ryu, Y.; Chen, G.; Dong, W.; Hu, Z. Increased atmospheric vapor pressure deficit reduces global vegetation growth. Sci. Adv. 2019, 5, eaax1396. [Google Scholar] [CrossRef] [PubMed]
- Huang, L.M.; Shao, M.A. Advances and perspectives on soil water research in China’s Loess Plateau. Earth Sci. Rev. 2019, 199, 22. [Google Scholar] [CrossRef]
- Yuan, W.; Cai, W.; Chen, Y.; Liu, S.; Dong, W.; Zhang, H.; Yu, G.; Chen, Z.; He, H.; Guo, W.; et al. Severe summer heatwave and drought strongly reduced carbon uptake in Southern China. Sci. Rep. 2016, 6, 18813. [Google Scholar] [CrossRef] [PubMed]
- Fan, B.; Peng, H.; Yao, H.; Li, K.; Hong, B. Seasonal and inter-annual dynamics of water vapor flux based on five-year eddy covariance measurements over an alpine grassland in arid Central Asia. J. Hydrol. 2025, 663, 134259. [Google Scholar] [CrossRef]
- Zhang, Q.; Yi, C.; Destouni, G.; Wohlfahrt, G.; Kuzyakov, Y.; Li, R.; Kutter, E.; Chen, D.; Rietkerk, M.; Manzoni, S.; et al. Water limitation regulates positive feedback of increased ecosystem respiration. Nat. Ecol. Evol. 2024, 8, 1870–1876. [Google Scholar] [CrossRef]
- Yu, Z.; Wang, P.; Yu, J.; Wang, T. Subsurface storage of previous year’s precipitation contributes to mitigating water deficit and surplus in dryland woody basin. J. Hydrol. 2025, 661, 133754. [Google Scholar] [CrossRef]
- Hammond, W.M.; Yu, K.; Wilson, L.A.; Will, R.E.; Anderegg, W.R.L.; Adams, H.D. Dead or dying? quantifying the point of no return from hydraulic failure in drought-induced tree mortality. New Phytol. 2019, 223, 1834–1843. [Google Scholar] [CrossRef]
- Marchin, R.M.; Medlyn, B.E.; Tjoelker, M.G. Decoupling between stomatal conductance and photosynthesis occurs under extreme heat in broadleaf tree species regardless of water access. Glob. Change Biol. 2023, 29, 6319–6335. [Google Scholar] [CrossRef]
- Xu, P.; Sun, W.; Mu, X.; Gao, P. The greening of vegetation on the loess plateau has resulted in a northward shift of the vegetation greenness line. Glob. Planet. Change 2024, 237, 104440. [Google Scholar]
- Verma, K.; Manisha, M.; Santrupt, R.M.; Anirudha, T.P.; Goswami, S.; Sekhar, M. Assessing groundwater recharge rates, water quality changes, and agricultural impacts of large-scale water recycling. Sci. Total Environ. 2023, 877, 17. [Google Scholar] [CrossRef]
- Tsakiris, G.P.; Loucks, D.P.; Tsakiris, G. Adaptive water resources management under climate change: An introduction. Water Resour. Manag. 2023, 37, 2221–2233. [Google Scholar] [CrossRef]








| Abbreviation | Name |
|---|---|
| TNSFP | Three-North Shelterbelt Forest Program |
| SPEI | Standardized Precipitation Evapotranspiration Index |
| SSMI | Standardized Soil Moisture Index |
| SSMI-S | Standardized Soil Moisture Index at shallow-soil layer (0–28 cm) |
| SSMI-M | Standardized Soil Moisture Index at middle-soil layer (28–100 cm) |
| SSMI-D | Standardized Soil Moisture Index at deep-soil layer (100–289 cm) |
| NDVI | Normalized Difference Vegetation Index |
| GPP | Gross Primary Productivity |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Yuan, L.; Wang, R.; Hu, E.; Zhang, H. Responses of Vegetation to Atmospheric and Soil Water Constraints Under Increasing Water Stress in China’s Three-North Shelter Forest Program Region. Land 2026, 15, 122. https://doi.org/10.3390/land15010122
Yuan L, Wang R, Hu E, Zhang H. Responses of Vegetation to Atmospheric and Soil Water Constraints Under Increasing Water Stress in China’s Three-North Shelter Forest Program Region. Land. 2026; 15(1):122. https://doi.org/10.3390/land15010122
Chicago/Turabian StyleYuan, Limin, Rui Wang, Ercha Hu, and Haidong Zhang. 2026. "Responses of Vegetation to Atmospheric and Soil Water Constraints Under Increasing Water Stress in China’s Three-North Shelter Forest Program Region" Land 15, no. 1: 122. https://doi.org/10.3390/land15010122
APA StyleYuan, L., Wang, R., Hu, E., & Zhang, H. (2026). Responses of Vegetation to Atmospheric and Soil Water Constraints Under Increasing Water Stress in China’s Three-North Shelter Forest Program Region. Land, 15(1), 122. https://doi.org/10.3390/land15010122
