The Dual Constraints of Ecological Regulation: How Opportunity Loss and Psychological Distance Entrap Coastal Farmers’ Livelihoods
Abstract
1. Introduction
2. Background and Framework
2.1. Policy Background
2.2. Theoretical Framework and Research Hypotheses
3. Materials and Methods
3.1. Study Area and Data Collection
3.2. Main Variables and Summary Statistics
3.3. Empirical Strategy
3.3.1. Measurement of Opportunity Losses
3.3.2. Multinomial Logit Model (MNL)
3.3.3. Instrument Variable Estimation
3.3.4. Mediating Effect Model
3.3.5. Moderating Effect Model
4. Results
4.1. Changes in Opportunity Losses from 2013 to 2023
4.2. Baseline Results Analysis
4.3. Instrument Variable Test
4.4. Robustness Check
4.5. Mechanism Analysis
4.6. Moderating Effect Analysis
4.7. Heterogeneity Analysis
5. Discussion
6. Conclusions and Implications
6.1. Conclusions
6.2. Implications
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Appendix A.1. The Weights of Regulated Activities
Appendix A.2. Mechanism Analysis Results: The Roles of Spatial, Temporal, and Hypothetical Distances in Livelihood Transition
| Variable | (5) Spatial Distance | (6) Livelihood Transition | (7) Temporal Distance | (8) Livelihood Transition | (9) Hypothetical Distance | (10) Livelihood Transition | |||
|---|---|---|---|---|---|---|---|---|---|
| yi = 1 | yi = 2 | yi = 1 | yi = 2 | yi = 1 | yi = 2 | ||||
| Opportunity losses variations | −0.055 *** (0.015) | −0.254 *** (0.095) | −0.251 *** (0.084) | −0.061 *** (0.021) | −0.250 ** (0.098) | −0.264 *** (0.092) | −0.017 (0.010) | −0.234 ** (0.101) | −0.264 *** (0.095) |
| Spatial distance | −0.304 (0.238) | 0.330 (0.251) | |||||||
| Temporal distance | −0.098 (0.239) | 0.168 (0.223) | |||||||
| Hypothetical distance | 0.456 ** (0.160) | 0.635 *** (0.196) | |||||||
| Control variables | control | control | control | control | control | control | control | control | control |
| Constant | −1.112 ** (0.522) | −2.951 ** (0.095) | −4.290 *** (1.638) | −0.932 ** (0.392) | −2.616 ** (1.291) | −4.417 *** (1.651) | 0.167 (0.580) | 2.873 ** (1.389) | −5.018 *** (1.907) |
| Observations | 239 | 239 | 239 | 239 | 239 | 239 | 239 | 239 | 239 |
References
- Crossland, C.J.; Baird, D.; Ducrotoy, J.-P.; Lindeboom, H.; Buddemeier, R.W.; Dennison, W.C.; Maxwell, B.A.; Smith, S.V.; Swaney, D.P. The coastal zone—A domain of global interactions. In Coastal Fluxes in the Anthropocene: The Land-Ocean Interactions in the Coastal Zone Project of the International Geosphere-Biosphere Programme; Springer: Berlin/Heidelberg, Germany, 2005; pp. 1–37. [Google Scholar]
- Zheng, Z.; Wu, Z.; Chen, Y.; Yang, Z.; Marinello, F. Exploration of Eco-Environment and Urbanization Changes in Coastal Zones: A Case Study in China over the Past 20 Years. Ecol. Indic. 2020, 119, 106847. [Google Scholar] [CrossRef]
- Halpern, B.S.; Longo, C.; Hardy, D.; McLeod, K.L.; Samhouri, J.F.; Katona, S.K.; Kleisner, K.; Lester, S.E.; O’Leary, J.; Ranelletti, M.; et al. An Index to Assess the Health and Benefits of the Global Ocean. Nature 2012, 488, 615–620. [Google Scholar] [CrossRef]
- Cheng, P.; Dong, Y.; Wang, Z.; Tang, H.; Jiang, P.; Liu, Y. What Are the Impacts of Livelihood Capital and Distance Effect on Farmers’ Willingness to Pay for Coastal Zone Ecological Protection? Empirical Analysis from the Beibu Gulf of China. Ecol. Indic. 2022, 140, 109053. [Google Scholar] [CrossRef]
- Economou, A.; Kotsev, I.; Peev, P.; Kathijotes, N. Coastal and Marine Spatial Planning in Europe. Case Studies for Greece and Bulgaria. Reg. Stud. Mar. Sci. 2020, 38, 101353. [Google Scholar] [CrossRef]
- Zheng, J.; Xu, W.; Tao, A.; Fan, J.; Xing, J.; Wang, G. Synergy Between Coastal Ecology and Disaster Mitigation in China: Policies, Practices, and Prospects. Ocean Coast. Manag. 2023, 245, 106866. [Google Scholar] [CrossRef]
- Cheng, P.; Wang, H.; Nie, X.; Zhu, S.; Chen, Z.; Wu, X.; Zhang, A.; Wang, J. What Are the Impacts of a Coastal Zone Protection Policy on Farmers’ Livelihood Capital? Empirical Analysis from the Perspective of Farmer Participation. Front. Mar. Sci. 2021, 8, 689182. [Google Scholar] [CrossRef]
- Nie, X.; He, L.; Chen, Z.; Yang, M.; Li, Y.; He, X.; Wang, H.; Gao, W. Study on Ecological Compensation Quotas in Different Confined Areas of Coastal Zone—A Case Study of Mangrove Reserve in Shankou, Guangxi, China. Ocean Coast. Manag. 2023, 246, 106865. [Google Scholar] [CrossRef]
- Lin, C.; Gao, L. Reserve regulation and multidimensional relative poverty of farmers: Evidence from the Panda Nature Reserves in China. Nat. Resour. Model. 2023, 36, e12358. [Google Scholar] [CrossRef]
- Zhong, F.; Liu, Y.; Ma, Y.; Li, Y.; He, M. The Government’s Impact on the Transformation of Rural Livelihoods in Agropastoral Regions: A Quantitative Analysis of Farmers’ Perceptions of Public Services in Inner Mongolia, China. Land Use Policy 2025, 157, 107642. [Google Scholar] [CrossRef]
- Li, Z.; Rao, D.; Liu, M. The Impact of China’s Grassland Ecological Compensation Policy on the Income Gap between Herder Households? A Case Study from a Typical Pilot Area. Land 2021, 10, 1405. [Google Scholar] [CrossRef]
- Lan, X.; Zhang, Q.; Xue, H.; Liang, H.; Wang, B.; Wang, W. Linking Sustainable Livelihoods with Sustainable Grassland Use and Conservation: A Case Study from Rural Households in a Semi-Arid Grassland Area, China. Land Use Policy 2021, 101, 105186. [Google Scholar] [CrossRef]
- Yang, Q.; Chen, Y.; Li, X.; Yang, J.; Gao, Y. Livelihood Vulnerability and Adaptation for Households Engaged in Forestry in Ecological Restoration Areas of the Chinese Loess Plateau. Chin. Geogr. Sci. 2024, 34, 849–868. [Google Scholar] [CrossRef]
- Zhao, X.; Chen, H.; Zhao, H.; Xue, B. Farmer Households’ Livelihood Resilience in Ecological-Function Areas: Case of the Yellow River Water Source Area of China. Environ. Dev. Sustain. 2022, 24, 9665–9686. [Google Scholar] [CrossRef]
- Liu, Z.; Liu, L. Characteristics and Driving Factors of Rural Livelihood Transition in the East Coastal Region of China: A Case Study of Suburban Shanghai. J. Rural Stud. 2016, 43, 145–158. [Google Scholar] [CrossRef]
- Scoones, I. Livelihoods Perspectives and Rural Development. J. Peasant Stud. 2009, 36, 171–196. [Google Scholar] [CrossRef]
- Mushongah, J.; Scoones, I. Livelihood Change in Rural Zimbabwe over 20 Years. J. Dev. Stud. 2012, 48, 1241–1257. [Google Scholar] [CrossRef]
- Duan, W.; Wen, Y. Impacts of Protected Areas on Local Livelihoods: Evidence of Giant Panda Biosphere Reserves in Sichuan Province, China. Land Use Policy 2017, 68, 168–178. [Google Scholar] [CrossRef]
- Ding, C.; Cai, F.; Liu, F.; Baiyinbaoligao; Xu, F. Assessing Development Opportunity Loss in River Source Area Based on Comparison of Cumulative Growth Rates of Per Capita GDP. Sustainability 2025, 17, 8723. [Google Scholar] [CrossRef]
- Kubitza, C.; Krishna, V.V.; Alamsyah, Z.; Qaim, M. The Economics Behind an Ecological Crisis: Livelihood Effects of Oil Palm Expansion in Sumatra, Indonesia. Hum. Ecol. 2018, 46, 107–116. [Google Scholar] [CrossRef]
- Lowder, S.K.; Skoet, J.; Raney, T. The Number, Size, and Distribution of Farms, Smallholder Farms and Family Farms Worldwide. World Dev. 2016, 87, 16–26. [Google Scholar] [CrossRef]
- Holland, D.S.; Abbott, J.K.; Norman, K.E. Fishing to Live or Living to Fish: Job Satisfaction and Identity of West Coast Fishermen. Ambio 2020, 49, 628–639. [Google Scholar] [CrossRef]
- Marshall, N.A.; Fenton, D.M.; Marshall, P.A.; Sutton, S.G. How Resource Dependency Can Influence Social Resilience within a Primary Resource Industry. Rural Sociol. 2007, 72, 359–390. [Google Scholar] [CrossRef]
- Lemoine, H.; Michaelis, A.; Lester, S. Fishing to Farming Livelihood Diversification: Perceptions from Commercial Fishers and Shellfish Farmers in the United States. People Nat. 2025, 7, 2038–2050. [Google Scholar] [CrossRef]
- Barnett, J.; Tschakert, P.; Head, L.; Adger, W.N. A science of loss. Nat. Clim. Change 2016, 6, 976–978. [Google Scholar] [CrossRef]
- Masterson, V.A.; Enqvist, J.P.; Stedman, R.C.; Tengö, M. Sense of place in social-ecological systems: From theory to empirics. Sustain. Sci. 2019, 14, 555–564. [Google Scholar] [CrossRef]
- Liberman, N.; Trope, Y. The Psychology of Transcending the Here and Now. Science 2008, 322, 1201–1205. [Google Scholar] [CrossRef]
- Fujita, K.; Sasota, J. The Effects of Construal Levels on Asymmetric Temptation-Goal Cognitive Associations. Soc. Cogn. 2011, 29, 125–146. [Google Scholar] [CrossRef]
- Hong, J.; Lee, A. Feeling Mixed but Not Torn: The Moderating Role of Construal Level in Mixed Emotions Appeals. J. Consum. Res. 2010, 37, 456–472. [Google Scholar] [CrossRef]
- Nie, X.; Wu, X.; Wang, H.; Kang, Q.; Li, F.; Li, L.; Qiao, H. What Psychological Factors Lead to the Abandonment of Cultivated Land by Coastal Farmers? An Interpretation Based on the Psychological Distance. J. Risk Res. 2023, 26, 947–968. [Google Scholar] [CrossRef]
- Luo, Y. Sustainability Associated Coastal Eco-Environmental Problems and Coastal Science Development in China. Bull. Chin. Acad. Sci. 2016, 31, 1133–1142. [Google Scholar] [CrossRef]
- Wang, H.; Yao, Y.; Dai, X.; Chen, Z.; Wu, J.; Qiu, G.; Feng, T. How Do Ecological Protection Policies Affect the Restriction of Coastal Development Rights? Analysis of Choice Preference Based on Choice Experiment. Mar. Policy 2022, 136, 104905. [Google Scholar] [CrossRef]
- Nie, X.; Su, Y.L.; Wang, H.; Lyu, C.; Wu, X.Y.; Li, X.J.; Li, F.Q.; Gao, W. Will short-term constraints affect long-term growth? Empirical analysis from the Beibu Gulf Mangrove National Natural Reserve of China. Ocean Coast Manag. 2023, 239, 106616. [Google Scholar] [CrossRef]
- Feng, J.; Wen, Y.; Zhang, H.; Duan, W.; Hao, H. Wetland Restoration, Household Income, and Livelihood Structure of Farmers. Front. Sustain. Food Syst. 2024, 8, 1256115. [Google Scholar] [CrossRef]
- Rahman, M.M.; Begum, A. Implication of Livelihood Diversification on Wetland Resources Conservation: A Case from Bangladesh. J. Wetl. Ecol. 2011, 5, 59–65. [Google Scholar] [CrossRef]
- Fabinyi, M.; Belton, B.; Dressler, W.H.; Knudsen, M.; Adhuri, D.S.; Aziz, A.A.; Akber, M.A.; Kittitornkool, J.; Kongkaew, C.; Marschke, M.; et al. Coastal Transitions: Small-Scale Fisheries, Livelihoods, and Maritime Zone Developments in Southeast Asia. J. Rural Stud. 2022, 91, 184–194. [Google Scholar] [CrossRef]
- Trope, Y.; Liberman, N. Construal-Level Theory of Psychological Distance. Psychol. Rev. 2010, 117, 440–463. [Google Scholar] [CrossRef]
- Guo, Y.; Wang, B.; Li, W.; Xu, H. Deciphering the Impacts of Environmental Perceptions on Place Attachment from the Perspective of Place of Origin: A Case Study of Rural China. Appl. Geogr. 2024, 162, 103165. [Google Scholar] [CrossRef]
- Eakin, H.; Shelton, R.; Siqueiros-Garcia, J.; Charli-Joseph, L.; Manuel-Navarrete, D. Loss and Social-Ecological Transformation: Pathways of Change in Xochimilco, Mexico. Ecol. Soc. 2019, 24, 15. [Google Scholar] [CrossRef]
- Li, L.Y.; Fan, F.M.; Liu, X.D. Determinants of rural household clean energy adoption willingness: Evidence from 72 typical villages in ecologically fragile regions of western China. J. Clean. Prod. 2022, 347, 131296. [Google Scholar] [CrossRef]
- Kerr, J.; Vardhan, M.; Jindal, R. Prosocial behavior and incentives: Evidence from field experiments in rural Mexico and Tanzania. Ecol. Econ. 2012, 73, 220–227. [Google Scholar] [CrossRef]
- Bhandari, P.B. Rural Livelihood Change? Household Capital, Community Resources and Livelihood Transition. J. Rural Stud. 2013, 32, 126–136. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Yuan, K.; Chen, Y.; Mei, Y.; Wang, Z. Effect of Farmer Differentiation and Generational Differences on Their Willingness to Exit Rural Residential Land: Analysis of Intermediary Effect Based on the Cognition of the Homestead Value. Resour. Sci. 2020, 42, 1680–1691. [Google Scholar] [CrossRef]
- Xie, H.; Ouyang, Z.; Liu, W.; He, Y. Impact of Farmer Differentiation on Farmland Abandonment: Evidence from Fujian’s Hilly Mountains, China. J. Rural Stud. 2025, 113, 103494. [Google Scholar] [CrossRef]
- Spence, A.; Poortinga, W.; Pidgeon, N. The psychological distance of climate change. Risk Anal. 2012, 32, 957–972. [Google Scholar] [CrossRef]
- Jones, C.; Hine, D.W.; Marks, A.D.G. The future is now: Reducing psychological distance to increase public engagement with climate change. Risk Anal. 2017, 37, 331–341. [Google Scholar] [CrossRef]
- Pede, V.; Mohammed, S.; Valera, H.; Ibrahim, M.; Antonio, R.J. Livelihood Diversification and Household Welfare among Farm Households in the Philippines. Agric. Econ. 2024, 55, 1040–1056. [Google Scholar] [CrossRef]
- Li, D.; Browne, G.; Wetherbe, J. Why Do Internet Users Stick with a Specific Web Site? A Relationship Perspective. Int. J. Electron. Commer. 2006, 10, 105–141. [Google Scholar] [CrossRef]
- Li, Y.; Li, X.; Cai, J. How Attachment Affects User Stickiness on Live Streaming Platforms: A Socio-Technical Approach Perspective. J. Retail. Consum. Serv. 2021, 60, 102478. [Google Scholar] [CrossRef]
- Yin, Y.; Hou, Y.; Langford, C.; Bai, H.; Hou, X. Herder Stocking Rate and Household Income under the Grassland Ecological Protection Award Policy in Northern China. Land Use Policy 2019, 82, 120–129. [Google Scholar] [CrossRef]
- Chen, Z.; Sarkar, A.; Rahman, A.; Li, X.J.; Xia, X.L. Exploring the drivers of green agricultural development (GAD) in China: A spatial association network structure approaches. Land Use Policy 2022, 112, 105827. [Google Scholar] [CrossRef]
- Sun, H.; Li, W.; Guo, X.; Wu, Z.; Mao, Z.; Feng, J. How Does Digital Inclusive Finance Affect Agricultural Green Development? Evidence from Thirty Provinces in China. Sustainability 2025, 17, 1449. [Google Scholar] [CrossRef]
- He, S.; Wang, B. Traditional Livelihood Risks and Adaptation within a Conservation Context: Insights from Two National Parks in China. Conserv. Sci. Pract. 2025, 7, e70134. [Google Scholar] [CrossRef]
- Johnson, D.S. Category, Narrative, and Value in the Governance of Small-Scale Fisheries. Mar. Policy 2006, 30, 747–756. [Google Scholar] [CrossRef]
- Ward, C.; Stringer, L.C.; Holmes, G. Protected Area Co-Management and Perceived Livelihood Impacts. J. Environ. Manag. 2018, 228, 1–12. [Google Scholar] [CrossRef]
- McWilliam, A.; Wianti, N.; Taufik, Y. Poverty and Prosperity among Sama Bajo Fishing Communities (Southeast Sulawesi, Indonesia). Singap. J. Trop. Geogr. 2021, 42, 132–148. [Google Scholar] [CrossRef]
- Marshall, N.; Park, S.; Adger, W.; Brown, K.; Howden, S. Transformational Capacity and the Influence of Place and Identity. Environ. Res. Lett. 2012, 7, 034022. [Google Scholar] [CrossRef]
- Knudsen, M. Poverty and Beyond: Small-Scale Fishing in Overexploited Marine Environments. Hum. Ecol. 2016, 44, 341–352. [Google Scholar] [CrossRef]
- Thanh, H.; Tschakert, P.; Hipsey, M. Moving Up or Going Under? Differential Livelihood Trajectories in Coastal Communities in Vietnam. World Dev. 2021, 138, 105219. [Google Scholar] [CrossRef]
- Zhai, J.; Yao, J.; Hu, X.; Tian, J.; Yang, R.; Lv, F.; Huang, Z.; Wang, L. Integrating Ecological Cognition and Compensation Strategies for Livelihood Transitions: Insights from the Poyang Lake Fishing Ban Policy. Sustainability 2025, 17, 2539. [Google Scholar] [CrossRef]
- Warren, C.; Steenbergen, D. Fisheries Decline, Local Livelihoods and Conflicted Governance: An Indonesian Case. Ocean Coast. Manag. 2021, 202, 105498. [Google Scholar] [CrossRef]
- Andriesse, E. Persistent Fishing Amidst Depletion, Environmental and Socioeconomic Vulnerability in Iloilo Province, the Philippines. Ocean Coast. Manag. 2018, 157, 130–137. [Google Scholar] [CrossRef]
- Lin, C.; Gao, L. Regulation Intensity, Freedom of Production Decision and the Poverty of Farmers: Evidence from the Panda Nature Reserves in China. Forests 2021, 12, 1528. [Google Scholar] [CrossRef]
- Chang, Y.; Zhang, Z.; Yoshino, K.; Zhou, S. Farmers’ tea and nation’s trees: A framework for eco-compensation assessment based on a subjective-objective combination analysis. J. Environ. Manag. 2020, 269, 110775. [Google Scholar] [CrossRef] [PubMed]

| Variable | Description and Definition | Mean | S.D. |
|---|---|---|---|
| Livelihood transition | 0 = Stable fishers (fishing households in both 2013 and 2023); 1 = Fishers transitioning to non-fishing agricultural livelihoods; 2 = Fishers transitioning to non-agricultural livelihoods. | 0.87 | 0.87 |
| Opportunity losses variations | (Opportunity losses in 2023—Opportunity losses in 2013)/1000 (thousand yuan per household per year). | −1.95 | 4.03 |
| Psychological distance | Composite index of the four dimensions below (spatial, temporal, social, and hypothetical distance). | 1.97 | 0.57 |
| Spatial distance [45] | Mean of 2 items: Only those living near wetlands are affected by wetland conditions; | 2.16 | 0.89 |
| Wetland degradation has a greater impact on people living close to wetlands. (5-point Likert). | |||
| Temporal distance [46] | Mean of 3 items: Wetland degradation will immediately affect your life; | 0.41 | 0.86 |
| The rapid disappearance of wetlands means that protection is needed now; | |||
| Future generations are more likely to be affected by wetland degradation. (5-point Likert). | |||
| Social distance [45,46] | Mean of 3 items: People you know are unlikely to be affected by wetland degradation; | 2.55 | 0.87 |
| Wetland degradation will affect you and your family; | |||
| Wetland degradation will affect your coworkers and neighbors. (5-point Likert). | |||
| Hypothetical distance [45,46] | Mean of 3 items: The severity of wetland degradation is largely exaggerated; | 2.84 | 0.74 |
| The true impacts of wetland degradation on human well-being are uncertain; | |||
| It is difficult to judge the severity of wetland degradation’s impacts on daily life due to interference from other factors. (5-point Likert). | |||
| Regulation intensity | 0 = Weakly regulated area; 1 = Strongly regulated area. | 0.57 | 0.50 |
| Policy publicity | −1 = Weak; 0 = Moderate; 1 = Strong. | 0.31 | 0.80 |
| Gender | 0 = Female; 1 = Male. | 0.67 | 0.47 |
| Age | Age of household head (year). | 53.64 | 12.63 |
| Education level | 0 = primary or below; 1 = junior secondary/vocational; 2 = senior secondary or above. | 0.66 | 0.75 |
| Household size | Household size (person). | 6.40 | 2.93 |
| Number of migrant workers | Non-agricultural laborers (person). | 1.27 | 1.59 |
| Distance to the coastline | Distance from household residence to the coastal zone (km). | 1.96 | 1.45 |
| Area of intertidal-flat use | Intertidal-flat use area (mu 1). | 2.03 | 11.30 |
| Type | Sample Size | Opportunity Losses in 2013 | Opportunity Losses in 2023 | Opportunity Losses Variations |
|---|---|---|---|---|
| Weakly regulated areas | 276 | 3424.32 | 2714.55 | −709.77 |
| Strongly regulated areas | 225 | 5706.65 | 3846.72 | −1859.93 |
| Fishing households | 239 | 7498.10 | 8215.79 | −986.65 |
| Non-fishing farming households | 38 | 1047.21 | 3441.19 | −1501.63 |
| Non-agricultural households | 224 | 1773.53 | 905.51 | −1185.65 |
| Average opportunity loss | 501 | 4449.32 | 3223.01 | −1226.31 |
| Variable | (1) | (2) | (3) | (4) | (5) | (6) First-Stage Regression | (7) Second-Stage | |
|---|---|---|---|---|---|---|---|---|
| MNL | dy/dx | Opportunity Losses Variations | IV-MNL | |||||
| yi = 1 | yi = 2 | yi = 0 | yi = 1 | yi = 2 | yi = 1 | yi = 2 | ||
| Opportunity losses variations | −0.246 ** (0.102) | −0.275 *** (0.095) | 0.052 *** (0.017) | −0.020 ** (0.010) | −0.032 *** (0.011) | −0.246 ** (0.102) | −0.275 *** (0.095) | |
| Instrumental variable | −0.001 *** (0.000) | |||||||
| Male | −0.635 (0.466) | −0.630 (0.411) | 0.123 * (0.069) | −0.057 (0.071) | −0.066 (0.069) | 0.258 (0.391) | −0.635 (0.466) | −0.630 (0.411) |
| Age | 0.012 (0.021) | 0.045 * (0.023) | −0.006 (0.004) | −0.001 (0.003) | 0.007 ** (0.003) | −0.029 (0.024) | 0.012 (0.021) | 0.045 * (0.023) |
| Education level (1) | 0.762 ** (0.361) | 0.366 (0.453) | −0.109 (0.069) | 0.102 * (0.055) | −0.007 (0.071) | −0.816 (0.707) | 0.762 ** (0.361) | 0.366 (0.453) |
| Education level (2) | 0.500 (0.446) | 0.588 (0.546) | −0.108 (0.080) | 0.034 (0.065) | 0.073 (0.092) | −0.632 (0.740) | 0.500 (0.446) | 0.588 (0.546) |
| Household size | 0.030 (0.071) | 0.054 (0.065) | −0.009 (0.011) | 0.001 (0.011) | 0.008 (0.011) | −0.081 (0.114) | 0.030 (0.071) | 0.054 (0.065) |
| Number of migrant workers | 0.077 (0.120) | −0.099 (0.164) | 0.004 (0.025) | 0.020 (0.016) | −0.024 (0.025) | 0.272 (0.165) | 0.077 (0.120) | −0.099 (0.164) |
| ln_distance_coast | 0.901 ** (0.439) | 1.686 *** (0.591) | −0.265 *** (0.084) | 0.021 (0.058) | 0.243 *** (0.088) | −1.007 * (0.575) | 0.901 ** (0.439) | 1.686 *** (0.591) *** |
| ln_intertidal-flat_area | −0.965 *** (0.346) | −2.072 *** (0.450) | 0.313 *** (0.057) | −0.003 (0.054) | −0.310 *** (0.071) | −0.571 (0.354) | −0.969 *** (0.346) | −2.072 *** (0.450) |
| Constant | −2.509 ** (1.254) | −4.536 *** (1.699) | 3.848 ** (1.515) | −2.509 ** (1.254) | −4.536 (1.699) | |||
| Observations | 239 | 239 | 239 | 239 | 239 | 239 | 239 | 239 |
| First-stage F statistic | 16.143 *** | |||||||
| Log pseudo-likelihood value | −219.450 | −219.450 | −876.326 | −876.326 | ||||
| Prob > chi2 | 0.000 | 0.000 | ||||||
| Pseudo R2 | 0.134 | 0.134 | ||||||
| Variable | Replacing the Core Independent Variable | Substituting the Dependent Variable | Applying Winsorization Technique | ||
|---|---|---|---|---|---|
| (1) | (2) | (3) | (4) | (5) | |
| yi = 1 | yi = 2 | yi = 1 | yi = 2 | ||
| New Opportunity losses variations | −0.021 ** (0.009) | −0.024 *** (0.008) | |||
| Opportunity losses variations | −0.260 *** (0.096) | −0.245 ** (0.100) | −0.273 *** (0.092) | ||
| Control variables | control | control | control | control | control |
| Constant | −2.435 ** (1.175) | −4.441 *** (1.612) | −2.805 ** (1.281) | −2.715 ** (1.213) | −4.675 *** (1.678) |
| Pseudo R2 | 0.133 | 0.133 | 0.165 | 0.134 | 0.134 |
| Observations | 239 | 239 | 239 | 239 | 239 |
| Variable | (1) Psychological Distance | (2) Livelihood Transitions | (3) Social Distance | (4) Livelihood Transitions | ||
|---|---|---|---|---|---|---|
| yi = 1 | yi = 2 | yi = 1 | yi = 2 | |||
| Opportunity losses variations | −0.065 *** (0.017) | −0.225 ** (0.090) | −0.231 *** (0.084) | −0.043 ** (0.016) | −0.234 ** (0.095) | −0.257 *** (0.088) |
| Psychological distance | 0.265 (0.223) | 0.729 *** (0.268) | ||||
| Social distance | 0.395 ** (0.173) | 0.580 *** (0.221) | ||||
| Control variables | control | control | control | control | control | control |
| Constant | −0.858 * (0.448) | −2.665 * (1.399) | −4.486 ** (1.828) | −0.530 (0.365) | −2.617 * (1.349) | −4.596 ** (1.837) |
| Observations | 239 | 239 | 239 | 239 | 239 | 239 |
| Variable | (1) Policy Publicity | (2) Regulation Intensity | (3) Strongly Regulated Area | (4) Weakly Regulated Area | ||||
|---|---|---|---|---|---|---|---|---|
| yi = 1 | yi = 2 | yi = 1 | yi = 2 | yi = 1 | yi = 2 | yi = 1 | yi = 2 | |
| Opportunity losses variations | −0.153 * (0.088) | −0.211 *** (0.081) | 0.008 (0.172) | −0.213 * (0.113) | −0.444 *** (0.112) | −0.433 *** (0.130) | 0.087 (0.178) | −0.230 ** (0.112) |
| Policy publicity | −0.499 ** (0.215) | −0.207 (0.285) | ||||||
| Regulation intensity | −0.604 (0.425) | 0.359 (0.670) | ||||||
| Opportunity losses variations × Policy publicity | −0.257 *** (0.058) | −0.201 *** (0.067) | ||||||
| Opportunity losses variations × Regulation intensity | −0.368 * (0.198) | −0.139 (0.140) | ||||||
| Control variables | control | control | control | control | control | control | control | control |
| Constant | −2.308 * (1.230) | −4.487 ** (1.817) | −2.039 (1.253) | −4.882 *** (1.809) | −2.923 (2.170) | −4.202 * (2.337) | −2.510 (1.754) | −6.163 ** (3.128) |
| Pseudo R2 | 0.150 | 0.150 | 0.149 | 0.149 | 0.205 | 0.205 | 0.142 | 0.142 |
| Observations | 239 | 239 | 239 | 239 | 136 | 136 | 103 | 103 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Li, F.; Qiu, L.; Wang, H.; Nie, X.; Chen, D. The Dual Constraints of Ecological Regulation: How Opportunity Loss and Psychological Distance Entrap Coastal Farmers’ Livelihoods. Land 2026, 15, 123. https://doi.org/10.3390/land15010123
Li F, Qiu L, Wang H, Nie X, Chen D. The Dual Constraints of Ecological Regulation: How Opportunity Loss and Psychological Distance Entrap Coastal Farmers’ Livelihoods. Land. 2026; 15(1):123. https://doi.org/10.3390/land15010123
Chicago/Turabian StyleLi, Fengqin, Li Qiu, Han Wang, Xin Nie, and Duo Chen. 2026. "The Dual Constraints of Ecological Regulation: How Opportunity Loss and Psychological Distance Entrap Coastal Farmers’ Livelihoods" Land 15, no. 1: 123. https://doi.org/10.3390/land15010123
APA StyleLi, F., Qiu, L., Wang, H., Nie, X., & Chen, D. (2026). The Dual Constraints of Ecological Regulation: How Opportunity Loss and Psychological Distance Entrap Coastal Farmers’ Livelihoods. Land, 15(1), 123. https://doi.org/10.3390/land15010123
