The CUGA Method: A Reliable Framework for Identifying Public Urban Green Spaces in Metropolitan Regions
Abstract
1. Introduction
1.1. Urban Green and Public Space: Background and Relevance
1.2. Urban Green Spaces, Equity and Accessibility: Policies, Planning and Research
1.3. Public Urban Green Spaces (PUGS) Identification: Challenges and Research Objective
2. Materials and Methods
2.1. PUGS Identification: Limitations of Administration, CUA and OSM Databases
2.2. PUGS Identification: Previous Methods Based on OSM and CUA
2.3. PUGS: Definition, Inclusion and Accessibility Criteria
2.4. Study Area
2.5. Data Sources
- CUA 2018 [36] provided by the EU Copernicus Land Monitoring Service offering harmonized land use and land cover data for 17 classes with the Minimum Mapping Unit (MMU) of 0.25 ha in urban areas (10 classes with the MMU of 1 ha in rural areas) for EU functional urban areas with more than 50,000 inhabitants, for the 2018 reference year in EEA38 countries (EU, EFTA, Western Balkans and Türkiye) and the UK. CUA 2018 was published in 2020 (reviewed in 2021) and was the first update of the CUA 2012. CUA is planned to be updated every 6 years, so the 2024 edition is expected to be published soon. CUA, like all Copernicus Land Monitoring Service products, is freely and openly accessible, provided users credit the source, disclose any modifications, and avoid implying EU endorsement.
- OSM [35] datasets derived from open crowdsourced geospatial data worldwide and offering a flexible and detailed dataset of urban land use and other relevant cartographic information. OSM features are labelled using a flexible tagging system, where each element is described by key–value pairs that define its type and attributes. For example, green spaces may be tagged as leisure = park, landuse = forest, or natural = grassland. This structure enables detailed classification but requires careful interpretation due to its community-driven nature. It is supposed to be regularly updated but accuracy is not guaranteed. OSM data are openly available under the Open Database License, allowing free use, adaptation, and redistribution, provided that proper attribution is given and any derivative works are shared under the same terms.
2.6. The Candidate Urban Green Area (CUGA) Method for PUGS Identification
2.6.1. Datasets and Preprocessing
- OSM_green_raw, containing polygons with potential to be PUGS, including the following key values: ‘landuse’ (basin, forest, grass, greenfield, meadow, recreation_ground, village_green), ‘leisure’ (common, garden, nature_reserve, park, pitch), and ‘natural’ (beach, grassland, heath, scrub, shrub, shrubbery, tree_row, water, wood);
- OSM_notPUGS, containing polygons with land uses that are GS but are excluded from PUGS classification, including the following key values: ‘landuse’ animal_keeping, cemetery, education, farmland, farmyard, greenhouse_horticulture, orchard, plant_nursery, vineyard, religious), ‘leisure’ (golf_course, horse_riding, marina, sports_centre, stadium); ‘amenities’ (animal_boarding, animal_breeding, animal_shelter, arts_centre, childcare, clinic, college, conference_centre, courthouse, embassy, events_venue, fire_station, grave_yard, hospital, monastery, nursing_home, parking, police, prep_school, prison, school, shelter, theatre, townhall, vehicle_inspecion, waste_transfer_station, youth_centre); ‘tourism’ (camp_site, caravan_site, theme_park, zoo);
- OSM_pitch, containing sports fields, ‘leisure’ (pitch);
- OSM_coastline, representing coastal line features, i.e., ‘natural’ (coastline);
- OSM_pedestrian, including pedestrian-related road segments, ‘highway’ (footway, path, pedestrian, residential, living_street).
2.6.2. CUGAs Identification
- Parks (CUGA_1_prk): Polygons with ‘leisure’ (park) and an area ≥ 0.5 ha are selected and saved as CUGA_1_prk.
- Gardens (CUGA__2_grd): From the untagged polygons, those with ‘leisure’ (garden), an area ≥ 0.5 ha, and access set to permissive or yes are selected and saved as CUGA_2_grd.
- Nature Reserves (CUGA_3_ntr): From the remaining untagged polygons, those with ‘leisure’ (nature_reserve), an area ≥ 0.5 ha, and intersecting the pedestrian network—suggesting greater likelihood of public foot access—are selected and saved as CUGA_3ntr.
- Recreation Grounds and Village Greens (CUGA_4_rgvg): Polygons with ‘landuse’ (recreation_ground, village_green), and an area ≥ 0.5 ha, are selected. CUA ‘other roads and associated land’ (12220) are subtracted —since some selected OSM features inaccurately extend over road areas—, multipart geometries are split, and polygons ≤ 0.5 ha are removed. The result is saved as CUGA_4_rgvg.
- Grass, Forest, Grassland, and Wood (CUGA_5_gfgw): From the remaining untagged polygons, those with ‘landuse’ (grass, forest), or ‘natural’ (grassland, wood), are selected. Polygons contained within others or overlapping CUA land transport infrastructure are removed. The following spatial relationships (SR) are then investigated to identify whether each polygon: (SR_a) intersects CUA GUAs; (SR_b) is contained in CUA GUAs; (SR_c) intersects the pedestrian network; (SR_d) is within 10 m of residential street segments; (SR_e) is surrounded by residential street segments; (SR_f) intersects with CUA dense residential fabric (classes 11100, 11210, 11220); or (SR_g) is within 25 m of the coastline. Polygons meeting any of these conditions are saved as CUGA_5-1 with registered binary information about their positive or negative spatial relationships.
- Then, a new filter is applied to CUGA_5-1 to select those polygons meeting any of the following combinations of the previously registered SR: SR_a, SR_c and SR_d; SR_a, SR_c and SR_f; SR_a, SR_d and SR_f; SR_b and SR_c; SR_e and ≥0.5 ha; SR_g. As can be inferred, this set of spatial conditions is designed to identify GUAs that are genuinely open and accessible to the public.
- The resulting polygons are processed with the CP6m script, which merges polygons closer than 6 m and removes narrow slivers. The output is saved as CUGA_5-2. From CUGA_5-2, polygons intersecting the pedestrian network, the 10 m residential buffer, or the CUA dense residential fabric are selected and intersected with CUGA_5-1. The result is saved as CUGA_5gfgw. CUA sports and leisure facilities and previously defined CUGAs (i.e., layers CUGA_1 to CUGA_4) are spatially subtracted. The CP6m script is applied again, followed by subtraction of the CUA transport infrastructure and removal of polygons < 0.5 ha. The result is saved as an updated CUGA_5_gfgw.
2.6.3. CUGAs Consolidation
2.7. Datasets and Validation Design
2.7.1. Datasets: Initial Comparison via Spatial Visualization and Descriptive Statistics
- Adm_prk: includes designated public parks from the datasets provided by each county.
- Adm_all: a broader dataset encompassing parks and other publicly accessible outdoor spaces, such as sports fields and recreational grounds. It includes all elements of Adm_prk.
- OSM_prk: contains OSM polygons tagged as parks.
- OSM_grn: an extensive dataset aiming to include potential PUGS (OSM_grn_raw). It includes all elements of OSM_prk.
- CUA_GUA: land classified as GUA by the CUA.
- CUGA: resulting from the proposed CUGA method
2.7.2. Urban Scope and Grid-Based Random Sampling
2.7.3. Validation
2.8. Performance Evaluation and Metrics
- Accuracy measures the overall proportion of correctly classified cells. While intuitive, it can be misleading in imbalanced datasets, where the majority class dominates the metric. Therefore, it is reported for completeness but not used as a primary evaluation criterion.
- Precision quantifies the proportion of potential PUGS of each dataset that are correctly identified. This metric penalizes false positives and is particularly relevant when overestimating green space accessibility could lead to misleading conclusions in planning or policy.
- Recall (or sensitivity) captures the proportion of actual PUGS that are correctly identified by the dataset. It penalizes FN and is essential to ensure that areas with real GS access are not overlooked.
- Specificity, or true negative rate, complements recall by measuring the proportion of non-PUGS cells that are correctly classified. This metric is important for evaluating the model’s ability to avoid overestimating GS presence.
- F1-score is the harmonic mean of precision and recall. It balances both types of error and is particularly useful in the presence of class imbalance. In this study, F1-score is used as the primary metric for ranking datasets.
- Matthews Correlation Coefficient (MCC) provides a balanced measure that considers all four elements of the confusion matrix. It is regarded as one of the most informative single-value metrics for binary classification, especially under class imbalance.
- Balanced Accuracy (BA) is the average of recall and specificity. This metric provides a more equitable assessment of performance across both classes, mitigating the bias introduced by class imbalance.
- Jaccard Index (JI), or Intersection over Union, measures the overlap between predicted and actual UGAs. It is a stricter metric than F1-score and is widely used in spatial analysis to evaluate the similarity between predicted and reference areas.
- Cohen’s Kappa (κ) quantifies the agreement between the dataset and the ground truth, correcting for agreement expected by chance. This metric is particularly relevant in validation contexts, as it reflects the reliability of the classification beyond random coincidence.
- where Po is the observed agreement and Pe is the expected agreement by chance.
2.9. Performance Statistical Significance Testing
2.10. Net Spatial Impact: Analysis and Statistical Testing
- the net area correctly identified as Urban Green Area (UGA);
- its associated Individual Catchment Area (ICA), defined as the 300-m buffer surrounding the UGA perimeter; and
- the Intercepted Residential Land (IRL) within that catchment, calculated as the sum of the areas of intersected polygons from the CUA residential land layer.
2.11. Tools and Software
3. Results
3.1. Preliminary Dataset Comparison: Visualization and Basic Statistics
3.2. PUGS Identification Performance Across Datasets
3.3. Statistical Superiority of CUGA
3.4. Net Area Analysis and Statistical Differences Between Methods
- Urban Green Area (UGA): area of potential PUGS.
- Individual Catchment Area (ICA): area of 300-m buffer around each potential PUGS
- Intercepted Residential Land (IRL): area of residential land intersected by each ICA, representing potential population exposure.
Net Areas [ha] | Rankings | |||||||
---|---|---|---|---|---|---|---|---|
County | Dataset | NP | UGA | ICA | IRL | UGA | ICA | IRL |
SD | Adm_all | 9 | 121.5 | 671.4 | 595.0 | 5 | 4 | 4 |
Adm_prk | 9 | 300.4 | 1096.9 | 723.0 | 1 | 2 | 2 | |
OSM_grn | 0 | 71.6 | 311.5 | 484.3 | 6 | 6 | 5 | |
OSM_prk | 11 | 273.4 | 1033.7 | 597.8 | 3 | 3 | 3 | |
CUA_GUA | 7 | 183.2 | 585.0 | 433.3 | 4 | 5 | 6 | |
CUGA | 20 | 289.3 | 1429.7 | 914.4 | 2 | 1 | 1 | |
F | Adm_all | 5 | 388.6 | 665.8 | 272.4 | 2 | 4 | 4 |
Adm_prk | 5 | 388.6 | 665.8 | 272.4 | 2 | 4 | 4 | |
OSM_grn | −14 | 86.0 | −269.5 | 431.8 | 6 | 6 | 3 | |
OSM_prk | 9 | 332.7 | 803.3 | 548.7 | 4 | 2 | 2 | |
CUA_GUA | 8 | 274.1 | 728.3 | 167.3 | 5 | 3 | 6 | |
CUGA | 22 | 497.9 | 1560.6 | 1062.2 | 1 | 1 | 1 | |
DC | Adm_all | 15 | 3136.2 | 3122.2 | 2415.7 | 3 | 2 | 2 |
Adm_prk | 15 | 3120.2 | 2587.0 | 1851.2 | 4 | 4 | 4 | |
OSM_grn | 9 | 2096.3 | 1286.5 | 1466.9 | 5 | 5 | 5 | |
OSM_prk | 19 | 3690.4 | 3112.5 | 2324.0 | 2 | 3 | 3 | |
CUA_GUA | 15 | 325.1 | 1035.1 | 835.4 | 6 | 6 | 6 | |
CUGA | 29 | 3718.5 | 3553.6 | 2848.2 | 1 | 1 | 1 | |
DLR | Adm_all | 3 | 232.3 | 480.7 | 307.9 | 3 | 5 | 5 |
Adm_prk | 4 | 233.6 | 508.1 | 345.8 | 2 | 4 | 4 | |
OSM_grn | 8 | 182.3 | 735.2 | 1019.3 | 5 | 3 | 2 | |
OSM_prk | 11 | 217.6 | 797.3 | 748.8 | 4 | 2 | 3 | |
CUA_GUA | 3 | −63.5 | −19.2 | 94.5 | 6 | 6 | 6 | |
CUGA | 21 | 240.9 | 1288.0 | 1532.8 | 1 | 1 | 1 | |
DR | Adm_all | 32 | 3878.7 | 4940.0 | 3590.9 | 4 | 3 | 3 |
Adm_prk | 33 | 4042.9 | 4857.8 | 3192.5 | 3 | 4 | 5 | |
OSM_grn | 3 | 2436.2 | 2063.8 | 3402.3 | 5 | 6 | 4 | |
OSM_prk | 50 | 4514.0 | 5746.8 | 4219.2 | 2 | 2 | 2 | |
CUA_GUA | 33 | 718.8 | 2329.3 | 1530.5 | 6 | 5 | 6 | |
CUGA | 92 | 4746.5 | 7831.9 | 6357.5 | 1 | 1 | 1 |
4. Discussion
4.1. Comparative Performance of CUGA and Existing Datasets
4.2. Spatial Robustness Across Urban Contexts
4.3. Strengths and Limitations of the Validation Framework
4.4. Methodological Innovations and Transferability
4.5. Policy and Planning Implications
4.6. Method Limitations and Future Research
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
BA | Balanced Accuracy |
CUA | Copernicus Urban Atlas |
CUGA | Candidate Urban Green Area |
DC | Dublin City |
DLR | Dún Laoghaire–Rathdown |
DR | Dublin Region |
EFTA | European Free Trade Association |
EU | European Union |
F | Fingal |
FN | False Negative |
FP | False Positive |
FUA | Functional Urban Area |
GI | Green Infrastructure |
GS | Green Spaces |
GUA | Green Urban Areas |
ICA | Individual Catchment Area |
IRL | Intercepted Residential Land |
JI | Jaccard Index |
K-W | Kruskal-Wallis |
MCC | Matthews Correlation Coefficient |
MMU | Minimum Mapping Unit |
OSM | OpenStreetMap |
PUGS | Public Urban Green Spaces |
SD | South Dublin |
SDG | Sustainable Development Goal |
STL | Street Tree Layer |
TN | True Negative |
TP | True Positive |
UGA | Urban Green Area |
UGI | Urban Green Infrastructure |
UGS | Urban Green Spaces |
UK | United Kingdom |
UN | United Nations |
WHO | World Health Organization |
WHO-ROE | World Health Organization Regional Office for Europe |
References
- United Nations. Transforming Our World: The 2030 Agenda for Sustainable Development; United Nations: New York, NY, USA, 2015; Available online: https://sdgs.un.org/publications/transforming-our-world-2030-agenda-sustainable-development-17981 (accessed on 26 August 2025).
- UN-Habitat. New Urban Agenda; United Nations: New York, NY, USA, 2017. [Google Scholar]
- WHO Regional Office for Europe. Urban Green Spaces and Health: A Review of Evidence; WHO Regional Office for Europe: Copenhagen, Denmark, 2016. [Google Scholar]
- WHO Regional Office for Europe. Urban Green Space Interventions and Health: A Review of Impacts and Effectiveness; WHO Regional Office for Europe: Copenhagen, Denmark, 2017. [Google Scholar]
- WHO Regional Office for Europe. Urban Green Spaces: A Brief for Action; WHO Regional Office for Europe: Copenhagen, Denmark, 2017. [Google Scholar]
- Jabbar, M.; Yusoff, M.M.; Shafie, A. Assessing the Role of Urban Green Spaces for Human Well-Being: A Systematic Review. GeoJournal 2022, 87, 4405–4423. [Google Scholar] [CrossRef]
- Braubach, M.; Egorov, A.; Mudu, P.; Wolf, T.; Ward Thompson, C.; Martuzzi, M. Effects of Urban Green Space on Environmental Health, Equity and Resilience. In Nature-Based Solutions to Climate Change Adaptation in Urban Areas: Linkages Between Science, Policy and Practice; Kabisch, N., Korn, H., Stadler, J., Bonn, A., Eds.; Springer: Berlin/Heidelberg, Germany, 2017; pp. 187–205. [Google Scholar]
- European Commission. Green Infrastructure (GI)—Enhancing Europe’s Natural Capital; Publications Office of the European Union: Luxembourg, 2013.
- European Commission. Our Life Insurance, Our Natural Capital: An EU Biodiversity Strategy to 2020; Publications Office of the European Union: Luxembourg, 2011.
- European Commission. Building a Green Infrastructure for Europe; Publications Office of the European Union: Luxembourg, 2013; ISBN 9789279334283.
- European Commission. Urban Agenda for the EU: Pact of Amsterdam; Publications Office of the European Union: Luxembourg, 2016.
- Sustainable Use of Land and Nature-Based Solutions Partnership. Action Plan Publications Office of the European Commission: Luxembourg, 2018. Available online: https://ec.europa.eu/futurium/en/system/files/ged/final_draft_action_plan_27-07-2018v3.pdf (accessed on 26 August 2025).
- Handley, J.; Pauleit, S.; Slinn, P.; Lindley, S.; Baker, M.; Barber, A.; Jones, C. Providing Accessible Natural Greenspace in Towns and Cities: A Practical Guide to Assessing the Resource and Implementing Local Standards for Provision; English Nature: Peterborough, UK, 2003. [Google Scholar]
- Handley, J.; Pauleit, S.; Slinn, P.; Barber, A.; Baker, M.; Carys, J.; Lindley, S. Accessible Natural Green Space Standards in Towns and Cities: A Review and Toolkit for Their Implementation; English Nature: Peterborough, UK, 2003. [Google Scholar]
- Wolch, J.R.; Byrne, J.; Newell, J.P. Urban Green Space, Public Health, and Environmental Justice: The Challenge of Making Cities ‘Just Green Enough’. Landsc. Urban Plan. 2014, 125, 234–244. [Google Scholar] [CrossRef]
- Rutt, R.L.; Gulsrud, N.M. Green Justice in the City: A New Agenda for Urban Green Space Research in Europe. Urban For. Urban Green. 2016, 19, 123–127. [Google Scholar] [CrossRef]
- Chatzimentor, A.; Apostolopoulou, E.; Mazaris, A.D. A Review of Green Infrastructure Research in Europe: Challenges and Opportunities. Landsc. Urban Plan. 2020, 198, 103775. [Google Scholar] [CrossRef]
- Liu, O.Y.; Russo, A. Assessing the Contribution of Urban Green Spaces in Green Infrastructure Strategy Planning for Urban Ecosystem Conditions and Services. Sustain. Cities Soc. 2021, 68, 102772. [Google Scholar] [CrossRef]
- Haase, D.; Larondelle, N.; Andersson, E.; Artmann, M.; Borgström, S.; Breuste, J.; Gomez-Baggethun, E.; Gren, Å.; Hamstead, Z.; Hansen, R.; et al. A Quantitative Review of Urban Ecosystem Service Assessments: Concepts, Models, and Implementation. Ambio 2014, 43, 413–433. [Google Scholar] [CrossRef] [PubMed]
- Davies, C.; Lafortezza, R. Urban Green Infrastructure in Europe: Is Greenspace Planning and Policy Compliant? Land Use Policy 2017, 69, 93–101. [Google Scholar] [CrossRef]
- Kourdounouli, C.; Jönsson, A.M. Urban Ecosystem Conditions and Ecosystem Services—A Comparison between Large Urban Zones and City Cores in the EU. J. Environ. Plan. Manag. 2020, 63, 798–817. [Google Scholar] [CrossRef]
- Panek-Chwastyk, E.; Dąbrowska-Zielińska, K.; Markowska, A.; Kluczek, M.; Pieniążek, M. Advanced Utilization of Satellite and Governmental Data for Determining the Coverage and Condition of Green Areas in Poland: An Experimental Statistics Supporting the Statistics Poland. Int. J. Appl. Earth Obs. Geoinf. 2024, 130, 103883. [Google Scholar] [CrossRef]
- Wüstemann, H.; Kalisch, D.; Kolbe, J. Access to Urban Green Space and Environmental Inequalities in Germany. Landsc. Urban Plan. 2017, 164, 124–131. [Google Scholar] [CrossRef]
- Cimini, A.; De Fioravante, P.; Marinosci, I.; Congedo, L.; Cipriano, P.; Dazzi, L.; Marchetti, M.; Scarascia Mugnozza, G.; Munafò, M. Green Urban Public Spaces Accessibility: A Spatial Analysis for the Urban Area of the 14 Italian Metropolitan Cities Based on SDG Methodology. Land 2024, 13, 2174. [Google Scholar] [CrossRef]
- Ruiz-Apilánez, B.; Ormaetxea, E.; Aguado-Moralejo, I. Urban Green Infrastructure Accessibility: Investigating Environmental Justice in a European and Global Green Capital. Land 2023, 12, 1534. [Google Scholar] [CrossRef]
- Magrinyà, F.; Mercadé-Aloy, J.; Ruiz-Apilánez, B. Merging Green and Active Transportation Infrastructure towards an Equitable Accessibility to Green Areas: Barcelona Green Axes. Land 2023, 12, 919. [Google Scholar] [CrossRef]
- Pellerey, V.; Giezen, M. More Green but Less Just? Analyzing Urban Green Spaces, Participation, and Environmental Justice in Amsterdam. J. Environ. Plan. Manag. 2024, 1–35. [Google Scholar] [CrossRef]
- Quatrini, V.; Tomao, A.; Corona, P.; Ferrari, B.; Masini, E.; Agrimi, M. Is New Always Better than Old? Accessibility and Usability of the Urban Green Areas of the Municipality of Rome. Urban For. Urban Green. 2019, 37, 126–134. [Google Scholar] [CrossRef]
- De Luca, C.; Libetta, A.; Conticelli, E.; Tondelli, S. Accessibility to and Availability of Urban Green Spaces (UGS) to Support Health and Wellbeing during the COVID-19 Pandemic—The Case of Bologna. Sustainability 2021, 13, 11054. [Google Scholar] [CrossRef]
- Jalkanen, J.; Fabritius, H.; Vierikko, K.; Moilanen, A.; Toivonen, T. Analyzing Fair Access to Urban Green Areas Using Multimodal Accessibility Measures and Spatial Prioritization. Appl. Geogr. 2020, 124, 102320. [Google Scholar] [CrossRef]
- Biernacka, M.; Kronenberg, J.; Łaszkiewicz, E. An Integrated System of Monitoring the Availability, Accessibility and Attractiveness of Urban Parks and Green Squares. Appl. Geogr. 2020, 116, 102152. [Google Scholar] [CrossRef]
- Mell, I.; Allin, S.; Reimer, M.; Wilker, J. Strategic Green Infrastructure Planning in Germany and the UK: A Transnational Evaluation of the Evolution of Urban Greening Policy and Practice. Int. Plan. Stud. 2017, 22, 333–349. [Google Scholar] [CrossRef]
- Giuliani, G.; Petri, E.; Interwies, E.; Vysna, V.; Guigoz, Y.; Ray, N.; Dickie, I. Modelling Accessibility to Urban Green Areas Using Open Earth Observations Data: A Novel Approach to Support the Urban SDG in Four European Cities. Remote Sens. 2021, 13, 422. [Google Scholar] [CrossRef]
- Chênes, C.; Giuliani, G.; Ray, N. Modelling Physical Accessibility to Public Green Spaces in Switzerland to Support the SDG11. Geomatics 2021, 1, 383–398. [Google Scholar] [CrossRef]
- OpenStreetMap Foundation. OpenStreetMap. Available online: https://www.openstreetmap.org (accessed on 2 June 2025).
- Copernicus Land Monitoring Service. Urban Atlas Land Cover/Land Use 2018 (Vector). European Environment Agency: Copenhagen, Denmark. Available online: https://land.copernicus.eu/en/products/urban-atlas/urban-atlas-2018 (accessed on 26 August 2025).
- UN-Habitat. SDG Indicator 11.7.1 Training Module: Public Space; UN-Habitat: Nairobi, Kenya, 2018; Available online: https://unhabitat.org/sites/default/files/2020/07/indicator_11.7.1_training_module_public_space.pdf (accessed on 26 August 2025).
- Prakash, M.; Ramage, S.; Kavvada, A.; Goodman, S. Open Earth Observations for Sustainable Urban Development. Remote Sens. 2020, 12, 1646. [Google Scholar] [CrossRef]
- Verde, N.; Patias, P.; Mallinis, G. A Cloud-Based Mapping Approach Using Deep Learning and Very-High Spatial Resolution Earth Observation Data to Facilitate the SDG 11.7.1 Indicator Computation. Remote Sens. 2022, 14, 1011. [Google Scholar] [CrossRef]
- Aguilar, R.; Kuffer, M. Cloud Computation Using High-Resolution Images for Improving the SDG Indicator on Open Spaces. Remote Sens. 2020, 12, 1144. [Google Scholar] [CrossRef]
- Kearney, S.P.; Coops, N.C.; Sethi, S.; Stenhouse, G.B. Maintaining Accurate, Current, Rural Road Network Data: An Extraction and Updating Routine Using RapidEye, Participatory GIS and Deep Learning. Int. J. Appl. Earth Obs. Geoinf. 2020, 87, 102031. [Google Scholar] [CrossRef]
- Zhang, C.; Sargent, I.; Pan, X.; Li, H.; Gardiner, A.; Hare, J.; Atkinson, P.M. An Object-Based Convolutional Neural Network (OCNN) for Urban Land Use Classification. Remote Sens. Environ. 2018, 216, 57–70. [Google Scholar] [CrossRef]
- Chen, B.; Tu, Y.; Song, Y.; Theobald, D.M.; Zhang, T.; Ren, Z.; Li, X.; Yang, J.; Wang, J.; Wang, X.; et al. Mapping Essential Urban Land Use Categories with Open Big Data: Results for Five Metropolitan Areas in the United States of America. ISPRS J. Photogramm. Remote Sens. 2021, 178, 203–218. [Google Scholar] [CrossRef]
- Deilami, K.; Hashim, M. Very High Resolution Optical Satellites for DEM Generation: A Review. Eur. J. Sci. Res. 2011, 49, 542–554. [Google Scholar]
- Gupta, K.; Roy, A.; Luthra, K.; Maithani, S. Mahavir GIS Based Analysis for Assessing the Accessibility at Hierarchical Levels of Urban Green Spaces. Urban For. Urban Green. 2016, 18, 198–211. [Google Scholar] [CrossRef]
- Pinto, L.V.; Ferreira, C.S.S.; Inácio, M.; Pereira, P. Urban Green Spaces Accessibility in Two European Cities: Vilnius (Lithuania) and Coimbra (Portugal). Geogr. Sustain. 2022, 3, 74–84. [Google Scholar] [CrossRef]
- Van de Voorde, T. Spatially Explicit Urban Green Indicators for Characterizing Vegetation Cover and Public Green Space Proximity: A Case Study on Brussels, Belgium. Int. J. Digit. Earth 2017, 10, 798–813. [Google Scholar] [CrossRef]
- Kabisch, N.; Strohbach, M.; Haase, D.; Kronenberg, J. Urban Green Space Availability in European Cities. Ecol. Indic. 2016, 70, 586–596. [Google Scholar] [CrossRef]
- Zepp, H.; Groß, L.; Inostroza, L. And the Winner Is? Comparing Urban Green Space Provision and Accessibility in Eight European Metropolitan Areas Using a Spatially Explicit Approach. Urban For. Urban Green. 2020, 49, 126603. [Google Scholar] [CrossRef]
- Pauleit, S.; Ambrose-Oji, B.; Andersson, E.; Anton, B.; Buijs, A.; Haase, D.; Elands, B.; Hansen, R.; Kowarik, I.; Kronenberg, J.; et al. Advancing Urban Green Infrastructure in Europe: Outcomes and Reflections from the GREEN SURGE Project. Urban For. Urban Green. 2019, 40, 4–16. [Google Scholar] [CrossRef]
- Schindler, M.; Le Texier, M.; Caruso, G. How Far Do People Travel to Use Urban Green Space? A Comparison of Three European Cities. Appl. Geogr. 2022, 141, 102673. [Google Scholar] [CrossRef]
- Copernicus Land Monitoring Service. Mapping Guide v6.3 for a European Urban Atlas; European Environment Agency: Copenhagen, Denmark, 2020. Available online: https://land.copernicus.eu/en/technical-library/urban_atlas_2012_2018_mapping_guide/@@download/file (accessed on 26 August 2025).
- Sikorski, P.; Gawryszewska, B.; Sikorska, D.; Chormański, J.; Schwerk, A.; Jojczyk, A.; Ciężkowski, W.; Archiciński, P.; Łepkowski, M.; Dymitryszyn, I.; et al. The Value of Doing Nothing—How Informal Green Spaces Can Provide Comparable Ecosystem Services to Cultivated Urban Parks. Ecosyst. Serv. 2021, 50, 101339. [Google Scholar] [CrossRef]
- Le Texier, M.; Schiel, K.; Caruso, G. The Provision of Urban Green Space and Its Accessibility: Spatial Data Effects in Brussels. PLoS ONE 2018, 13, e0204684. [Google Scholar] [CrossRef] [PubMed]
- Ito; OpenStreetMap Wiki Green Space Access Ito Map. Available online: https://wiki.openstreetmap.org/wiki/Green_space_access_ITO_map (accessed on 24 July 2025).
- Taylor, L.; Hochuli, D.F. Defining Greenspace: Multiple Uses across Multiple Disciplines. Landsc. Urban Plan. 2017, 158, 25–38. [Google Scholar] [CrossRef]
- Lee, D.H.; Chamberlain, B.; Park, H.Y. Toward a Construct-Based Definition of Urban Green Space: A Literature Review of the Spatial Dimensions of Measurement, Methods, and Exposure. Land 2025, 14, 517. [Google Scholar] [CrossRef]
- UN-Habitat. SDG Indicator Metadata—Goal 11; United Nations Human Settlements Programme (UN-Habitat): Nairobi, Kenya, 2025; Available online: https://unhabitat.org/sites/default/files/2022/08/sdg_indicator_metadata-11.3.2.pdf (accessed on 26 August 2025).
- Łaszkiewicz, E.; Wolff, M.; Andersson, E.; Kronenberg, J.; Barton, D.N.; Haase, D.; Langemeyer, J.; Baró, F.; McPhearson, T. Greenery in Urban Morphology: A Comparative Analysis of Differences in Urban Green Space Accessibility for Various Urban Structures across European Cities. Ecol. Soc. 2022, 27, art22. [Google Scholar] [CrossRef]
- Konijnendijk, C. The 3-30-300 Rule for Urban Forestry and Greener Cities. Biophilic Cities J. 2021, 4, 2. [Google Scholar]
- Dublin City Council. Dublin City Parks Strategy 2019–2022; Dublin City Council: Dublin, Ireland, 2019.
- Parks and Open Spaces DCC Dataset. Smartdublin.ie. Available online: https://data.smartdublin.ie/dataset/parks-and-open-spaces-dcc (accessed on 25 July 2025).
- Parks SDCC Dataset. Smartdublin.ie. Available online: https://data.smartdublin.ie/dataset/parks-sdcc1 (accessed on 25 July 2025).
- Local/National Parks and Play Grounds FCC 2023 Dataset. Smartdublin.ie. Available online: https://data.smartdublin.ie/dataset/local-national-parks-and-play-grounds-fcc-20232 (accessed on 25 July 2025).
- Main Parks DLR Dataset. Smartdublin.ie. Available online: https://data.smartdublin.ie/dataset/main-parks-dlr (accessed on 25 July 2025).
- Google. Google Earth Satellite Imagery of Dublin, Ireland. 2025. Available online: https://earth.google.com (accessed on 25 July 2025).
- Google. Google Map Data and Information. 2025. Available online: https://maps.google.com (accessed on 25 July 2025).
- Google. Google Street View Imagery of Dublin. 2025. Available online: https://www.google.com/maps (accessed on 25 July 2025).
- Trimaille, E. QuickOSM, Version 2.4.1; QGIS Plugin, 2025. Available online: https://plugins.qgis.org/plugins/QuickOSM/ (accessed on 25 July 2025).
- QGIS Development Team. QGIS Geographic Information System. Open Source Geospatial Foundation Project. 2025. Available online: https://qgis.org (accessed on 25 July 2025).
- The jamovi project. jamovi (version 2.6) software. 2025. Available online: https://www.jamovi.org (accessed on 25 July 2025).
County | Validation Cells [n] | Urban Area [km2] | Residential Urban Area [km2] | Urban Scope Area [km2] |
---|---|---|---|---|
Dublin City (DC) | 99 (25.9%) | 91.69 (24.9%) | 51.06 (29.4%) | 115.11 (22.8%) |
Fingal (F) | 129 (33.8%) | 127.15 (34.5%) | 49.42 (28.4%) | 183.95 (36.4%) |
Dún Laoghaire-Rathdown (DLR) | 68 (17.8%) | 65.84 (17.9%) | 39.28 (22.6%) | 89.05 (17.6%) |
South Dublin (SD) | 86 (22.5%) | 83.65 (22.7%) | 34.19 (19.7%) | 116.86 (23.1%) |
Dublin Region (DR) | 382 (100.0%) | 368.33 (100.0%) | 173.95 (100.0%) | 504.96 (100.0%) |
Percentiles | Shapiro-Wilk | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
County | Dataset | n | Mean | SD | Min | p25 | p50 | p75 | Max | Sum | W | p |
DC | Adm_all | 206 | 9.7 | 53.4 | 0.5 | 0.9 | 1.8 | 5.4 | 678.8 | 2005.8 | 0.130 | <0.001 |
Adm_prk | 60 | 26.7 | 97.2 | 0.5 | 2.5 | 6.7 | 13.3 | 678.8 | 1602.4 | 0.248 | <0.001 | |
OSM_grn | 530 | 4.8 | 31.2 | 0.5 | 0.7 | 1.1 | 2.3 | 649.1 | 2524.8 | 0.090 | <0.001 | |
OSM_prk | 148 | 9.5 | 55.0 | 0.5 | 0.8 | 1.6 | 6.5 | 660.8 | 1406.5 | 0.117 | <0.001 | |
CUA_GUA | 329 | 4.4 | 12.0 | 0.5 | 0.8 | 1.2 | 2.8 | 157.7 | 1442.2 | 0.305 | <0.001 | |
CUGA | 263 | 7.0 | 44.0 | 0.5 | 0.8 | 1.2 | 3.1 | 660.8 | 1837.9 | 0.105 | <0.001 | |
DLR | Adm_all | 16 | 22.4 | 21.9 | 1.1 | 7.9 | 13.0 | 35.0 | 84.0 | 358.5 | 0.822 | 0.005 |
Adm_prk | 15 | 23.8 | 21.9 | 1.6 | 8.3 | 13.4 | 36.4 | 84.0 | 357.4 | 0.823 | 0.007 | |
OSM_grn | 677 | 5.7 | 25.3 | 0.5 | 0.7 | 1.2 | 3.0 | 470.6 | 3851.3 | 0.162 | <0.001 | |
OSM_prk | 93 | 5.6 | 11.2 | 0.5 | 0.9 | 1.9 | 4.6 | 81.5 | 517.2 | 0.453 | <0.001 | |
CUA_GUA | 214 | 3.2 | 6.5 | 0.5 | 0.8 | 1.2 | 2.6 | 51.3 | 678.3 | 0.400 | <0.001 | |
CUGA | 199 | 3.9 | 8.6 | 0.5 | 0.7 | 1.2 | 3.0 | 81.5 | 766.2 | 0.385 | <0.001 | |
F | Adm_all | 35 | 16.3 | 30.1 | 0.6 | 1.2 | 3.6 | 14.0 | 129.1 | 569.6 | 0.575 | <0.001 |
Adm_prk | 33 | 17.1 | 30.8 | 0.6 | 1.2 | 3.6 | 14.2 | 129.1 | 564.3 | 0.591 | <0.001 | |
OSM_grn | 2078 | 3.2 | 7.4 | 0.5 | 0.9 | 1.6 | 3.1 | 129.1 | 6556.7 | 0.278 | <0.001 | |
OSM_prk | 120 | 9.3 | 19.8 | 0.5 | 0.9 | 2.4 | 6.1 | 129.1 | 1113.0 | 0.475 | <0.001 | |
CUA_GUA | 302 | 3.4 | 8.5 | 0.5 | 0.7 | 1.2 | 2.1 | 73.5 | 1030.2 | 0.333 | <0.001 | |
CUGA | 311 | 5.2 | 13.2 | 0.5 | 0.7 | 1.4 | 3.5 | 129.1 | 1623.5 | 0.362 | <0.001 | |
SD | Adm_all | 326 | 4.5 | 12.3 | 0.5 | 0.7 | 1.2 | 2.7 | 118.2 | 1452.3 | 0.313 | <0.001 |
Adm_prk | 73 | 12.5 | 18.8 | 0.6 | 3.1 | 6.7 | 13.1 | 118.2 | 911.6 | 0.568 | <0.001 | |
OSM_grn | 1424 | 5.5 | 35.6 | 0.5 | 0.8 | 1.3 | 2.9 | 1218.0 | 7766.6 | 0.083 | <0.001 | |
OSM_prk | 83 | 11.5 | 20.2 | 0.5 | 1.6 | 4.4 | 11.5 | 130.2 | 952.8 | 0.535 | <0.001 | |
CUA_GUA | 316 | 3.3 | 8.5 | 0.5 | 0.7 | 1.2 | 2.5 | 118.0 | 1038.9 | 0.284 | <0.001 | |
CUGA | 301 | 4.3 | 11.6 | 0.5 | 0.7 | 1.2 | 2.5 | 130.2 | 1279.9 | 0.315 | <0.001 | |
DR | Adm_all | 583 | 7.5 | 34.2 | 0.5 | 0.8 | 1.4 | 4.4 | 678.8 | 4386.2 | 0.159 | <0.001 |
Adm_prk | 181 | 19.0 | 59.0 | 0.5 | 2.6 | 6.7 | 14.2 | 678.8 | 3435.6 | 0.257 | <0.001 | |
OSM_grn | 4709 | 4.4 | 24.7 | 0.5 | 0.8 | 1.4 | 2.9 | 1218.0 | 20,699.3 | 0.093 | <0.001 | |
OSM_prk | 444 | 9.0 | 34.8 | 0.5 | 0.9 | 2.2 | 7.0 | 660.8 | 3989.5 | 0.185 | <0.001 | |
CUA_GUA | 1161 | 3.6 | 9.3 | 0.5 | 0.7 | 1.2 | 2.5 | 157.7 | 4189.7 | 0.310 | <0.001 | |
CUGA | 1074 | 5.1 | 24.0 | 0.5 | 0.7 | 1.2 | 3.1 | 660.8 | 5507.5 | 0.138 | <0.001 |
Validation | Performance | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
County | Dataset | TP | TN | FP | FN | Acc | Prc | Rec | Spc | F1s | MCC | BA | JI | κ |
DC | Adm_all | 25 | 58 | 10 | 6 | 0.838 | 0.714 | 0.806 | 0.853 | 0.758 | 0.640 | 0.830 | 0.610 | 0.637 |
Adm_prk | 17 | 66 | 2 | 14 | 0.838 | 0.895 | 0.548 | 0.971 | 0.680 | 0.611 | 0.759 | 0.515 | 0.580 | |
OSM_grn | 31 | 46 | 22 | 0 | 0.778 | 0.585 | 1.000 | 0.676 | 0.738 | 0.629 | 0.838 | 0.585 | 0.567 | |
OSM_prk | 20 | 67 | 1 | 11 | 0.879 | 0.952 | 0.645 | 0.985 | 0.769 | 0.715 | 0.815 | 0.625 | 0.691 | |
CUA_GUA | 26 | 57 | 11 | 5 | 0.838 | 0.703 | 0.839 | 0.838 | 0.765 | 0.649 | 0.838 | 0.619 | 0.643 | |
CUGA | 30 | 67 | 1 | 1 | 0.980 | 0.968 | 0.968 | 0.985 | 0.968 | 0.953 | 0.977 | 0.938 | 0.953 | |
DLR | Adm_all | 4 | 45 | 1 | 18 | 0.721 | 0.800 | 0.182 | 0.978 | 0.296 | 0.287 | 0.580 | 0.174 | 0.200 |
Adm_prk | 4 | 46 | 0 | 18 | 0.735 | 1.000 | 0.182 | 1.000 | 0.308 | 0.361 | 0.591 | 0.182 | 0.231 | |
OSM_grn | 21 | 33 | 13 | 1 | 0.794 | 0.618 | 0.955 | 0.717 | 0.750 | 0.629 | 0.836 | 0.600 | 0.588 | |
OSM_prk | 11 | 46 | 0 | 11 | 0.838 | 1.000 | 0.500 | 1.000 | 0.667 | 0.635 | 0.750 | 0.500 | 0.575 | |
CUA_GUA | 12 | 37 | 9 | 10 | 0.721 | 0.571 | 0.545 | 0.804 | 0.558 | 0.354 | 0.675 | 0.387 | 0.354 | |
CUGA | 21 | 46 | 0 | 1 | 0.985 | 1.000 | 0.955 | 1.000 | 0.977 | 0.967 | 0.977 | 0.955 | 0.966 | |
F | Adm_all | 5 | 104 | 0 | 20 | 0.845 | 1.000 | 0.200 | 1.000 | 0.333 | 0.410 | 0.600 | 0.200 | 0.287 |
Adm_prk | 5 | 104 | 0 | 20 | 0.845 | 1.000 | 0.200 | 1.000 | 0.333 | 0.410 | 0.600 | 0.200 | 0.287 | |
OSM_grn | 24 | 66 | 38 | 1 | 0.698 | 0.387 | 0.960 | 0.635 | 0.552 | 0.470 | 0.797 | 0.381 | 0.381 | |
OSM_prk | 12 | 101 | 3 | 13 | 0.876 | 0.800 | 0.480 | 0.971 | 0.600 | 0.556 | 0.726 | 0.429 | 0.532 | |
CUA_GUA | 16 | 96 | 8 | 9 | 0.868 | 0.667 | 0.640 | 0.923 | 0.653 | 0.572 | 0.782 | 0.485 | 0.572 | |
CUGA | 22 | 104 | 0 | 3 | 0.977 | 1.000 | 0.880 | 1.000 | 0.936 | 0.925 | 0.940 | 0.880 | 0.922 | |
SD | Adm_all | 15 | 58 | 6 | 7 | 0.849 | 0.714 | 0.682 | 0.906 | 0.698 | 0.597 | 0.794 | 0.536 | 0.597 |
Adm_prk | 9 | 64 | 0 | 13 | 0.849 | 1.000 | 0.409 | 1.000 | 0.581 | 0.583 | 0.705 | 0.409 | 0.507 | |
OSM_grn | 21 | 43 | 21 | 1 | 0.744 | 0.500 | 0.955 | 0.672 | 0.656 | 0.547 | 0.813 | 0.488 | 0.482 | |
OSM_prk | 11 | 64 | 0 | 11 | 0.872 | 1.000 | 0.500 | 1.000 | 0.667 | 0.653 | 0.750 | 0.500 | 0.598 | |
CUA_GUA | 15 | 56 | 8 | 7 | 0.826 | 0.652 | 0.682 | 0.875 | 0.667 | 0.549 | 0.778 | 0.500 | 0.549 | |
CUGA | 20 | 64 | 0 | 2 | 0.977 | 1.000 | 0.909 | 1.000 | 0.952 | 0.939 | 0.955 | 0.909 | 0.937 | |
DR | Adm_all | 49 | 265 | 17 | 51 | 0.822 | 0.742 | 0.490 | 0.940 | 0.590 | 0.500 | 0.715 | 0.419 | 0.483 |
Adm_prk | 35 | 280 | 2 | 65 | 0.825 | 0.946 | 0.350 | 0.993 | 0.511 | 0.510 | 0.671 | 0.343 | 0.430 | |
OSM_grn | 97 | 188 | 94 | 3 | 0.746 | 0.508 | 0.970 | 0.667 | 0.667 | 0.560 | 0.818 | 0.500 | 0.492 | |
OSM_prk | 54 | 278 | 4 | 46 | 0.869 | 0.931 | 0.540 | 0.986 | 0.684 | 0.644 | 0.763 | 0.519 | 0.608 | |
CUA_GUA | 69 | 246 | 36 | 31 | 0.825 | 0.657 | 0.690 | 0.872 | 0.673 | 0.554 | 0.781 | 0.507 | 0.553 | |
CUGA | 93 | 281 | 1 | 7 | 0.979 | 0.989 | 0.930 | 0.996 | 0.959 | 0.946 | 0.963 | 0.921 | 0.945 |
County | Dataset | b | c | p-Value |
---|---|---|---|---|
DC | Adm_all | 14 | 0 | <0.001 |
Adm_prk | 15 | 1 | <0.001 | |
OSM_grn | 21 | 1 | <0.001 | |
OSM_prk | 11 | 1 | 0.006 | |
CUA_GUA | 15 | 1 | <0.001 | |
DLR | Adm_all | 18 | 0 | <0.001 |
Adm_prk | 17 | 0 | <0.001 | |
OSM_grn | 14 | 1 | <0.001 | |
OSM_prk | 10 | 0 | 0.002 | |
CUA_GUA | 18 | 0 | <0.001 | |
F | Adm_all | 17 | 0 | <0.001 |
Adm_prk | 17 | 0 | <0.001 | |
OSM_grn | 38 | 2 | <0.001 | |
OSM_prk | 13 | 0 | <0.001 | |
CUA_GUA | 14 | 0 | <0.001 | |
SD | Adm_all | 11 | 0 | <0.001 |
Adm_prk | 11 | 0 | <0.001 | |
OSM_grn | 21 | 1 | <0.001 | |
OSM_prk | 9 | 0 | 0.004 | |
CUA_GUA | 15 | 2 | 0.002 | |
DR | Adm_all | 60 | 0 | <0.001 |
Adm_prk | 60 | 1 | <0.001 | |
OSM_grn | 94 | 5 | <0.001 | |
OSM_prk | 43 | 1 | <0.001 | |
CUA_GUA | 62 | 3 | <0.001 |
Area Type | County | K-W | p-Value |
---|---|---|---|
UGA | DC | 20.38 | 0.001 |
DLR | 46.69 | <0.001 | |
F | 113.29 | <0.001 | |
SD | 35.97 | <0.001 | |
DR | 178.20 | <0.001 | |
ICA | DC | 19.17 | 0.002 |
DLR | 46.00 | <0.001 | |
F | 107.56 | <0.001 | |
SD | 32.98 | <0.001 | |
DR | 167.84 | <0.001 | |
IRL | DC | 21.86 | <0.001 |
DLR | 49.44 | <0.001 | |
F | 87.49 | <0.001 | |
SD | 31.84 | <0.001 | |
DR | 158.89 | <0.001 |
UGA | Adm_all | Adm_prk | OSM_grn | OSM_prk | CUA_UGA | CUGA |
---|---|---|---|---|---|---|
Adm_all | — | 0.018 * | <0.001 * | 0.779 | 0.001 * | 0.010 * |
Adm_prk | 0.018 * | — | <0.001 * | 0.040 * | <0.001 * | <0.001 * |
OSM_grn | <0.001 * | <0.001 * | — | <0.001 * | <0.001 * | <0.001 * |
OSM_prk | 0.779 | 0.040 * | <0.001 * | — | <0.001 * | 0.004 * |
CUA_UGA | 0.001 * | <0.001 * | <0.001 * | <0.001 * | — | 0.517 |
CUGA | 0.010 * | <0.001 * | <0.001 * | 0.004 * | 0.517 | — |
ICA | Adm_all | Adm_prk | OSM_grn | OSM_prk | CUA_UGA | CUGA |
Adm_all | — | 0.019 * | <0.001 * | 0.791 | 0.001 * | 0.008 * |
Adm_prk | 0.019 * | — | <0.001 * | 0.040 * | <0.001 * | <0.001 * |
OSM_grn | <0.001 * | <0.001 * | — | <0.001 * | <0.001 * | <0.001 * |
OSM_prk | 0.791 | 0.040 * | <0.001 * | — | <0.001 * | 0.004 * |
CUA_UGA | 0.001 * | <0.001 * | <0.001 * | <0.001 * | — | 0.604 |
CUGA | 0.008 * | <0.001 * | <0.001 * | 0.004 * | 0.604 | — |
IRL | Adm_all | Adm_prk | OSM_grn | OSM_prk | CUA_UGA | CUGA |
Adm_all | — | 0.015 * | <0.001 * | 0.783 | <0.001 * | 0.004 * |
Adm_prk | 0.015 * | — | <0.001 * | 0.031 * | <0.001 * | <0.001 * |
OSM_grn | <0.001 * | <0.001 * | — | <0.001 * | <0.001 * | <0.001 * |
OSM_prk | 0.783 | 0.031 * | <0.001 * | — | <0.001 * | 0.002 * |
CUA_UGA | <0.001 * | <0.001 * | <0.001 * | <0.001 * | — | 0.511 |
CUGA | 0.004 * | <0.001 * | <0.001 * | 0.002 * | 0.511 | — |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ruiz-Apilánez, B.; Pilla, F. The CUGA Method: A Reliable Framework for Identifying Public Urban Green Spaces in Metropolitan Regions. Land 2025, 14, 1751. https://doi.org/10.3390/land14091751
Ruiz-Apilánez B, Pilla F. The CUGA Method: A Reliable Framework for Identifying Public Urban Green Spaces in Metropolitan Regions. Land. 2025; 14(9):1751. https://doi.org/10.3390/land14091751
Chicago/Turabian StyleRuiz-Apilánez, Borja, and Francesco Pilla. 2025. "The CUGA Method: A Reliable Framework for Identifying Public Urban Green Spaces in Metropolitan Regions" Land 14, no. 9: 1751. https://doi.org/10.3390/land14091751
APA StyleRuiz-Apilánez, B., & Pilla, F. (2025). The CUGA Method: A Reliable Framework for Identifying Public Urban Green Spaces in Metropolitan Regions. Land, 14(9), 1751. https://doi.org/10.3390/land14091751