Spatiotemporal Evolution and Spatial Correlation Network Characteristics of Urban Land Green Use Efficiency in China: A Network Centrality Analysis Perspective
Abstract
:1. Introduction
2. Theoretical Analysis
2.1. The Context of ULGUE
2.2. Mechanism of Spatial Association Network Formation of ULGUE
3. Methods and Data Sources
3.1. Overview of the Study Area
3.2. Methods
3.2.1. Global Parametric Super-Efficient SBM Modeling
3.2.2. Non-Parametric Kernel Density Estimation
3.2.3. Spatial Correlation Network Analysis
- (1)
- Modified gravity model
- (2)
- Social Network Analysis
- (1)
- Overall network characterization index
- (2)
- Individual network characterization index
3.2.4. Pearson’s Correlation Coefficient Method
3.3. Indicator System Construction and Data Sources
4. Results
4.1. Characterization of the Temporal and Spatial Dynamic Evolution of the ULGUE in China
4.1.1. Analysis of the Time-Series Dynamic Evolution of the ULGUE in China
4.1.2. Analysis of the Spatial Pattern Evolution of the ULGUE in China
4.2. Spatial Correlation Network Characteristics and Effect Analysis of the ULGUE in China
4.2.1. Network Characterization
4.2.2. Analysis of Network Structure Effects
5. Discussion
5.1. Discussion of the Findings
5.2. Policy Recommendations
5.3. Research Limitations and Future Prospects
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- UN-Habitat. World Cities Report 2022: Envisaging the Future of Cities; UN-Habitat: Nairobi, Kenya, 2022. [Google Scholar]
- Wu, H.; Fang, S.; Zhang, C.; Hu, S.; Nan, D.; Yang, Y. Exploring the impact of urban form on urban land use efficiency under low-carbon emission constraints: A case study in China’s Yellow River Basin. J. Environ. Manag. 2022, 311, 114866. [Google Scholar] [CrossRef] [PubMed]
- Caprotti, F.; Cowley, R.; Datta, A.; Broto, V.C.; Gao, E.; Georgeson, L.; Herrick, C.; Odendaal, N.; Joss, S. The New Urban Agenda: Key opportunities and challenges for policy and practice. Urban Res. Pract. 2017, 10, 367–378. [Google Scholar] [CrossRef]
- Sun, Y.F.; Jia, Z.; Chen, Q.; Na, H.Y. Spatial Pattern and Spillover Effects of the Urban Land Green Use Efficiency for the Lanzhou-Xining Urban Agglomeration of the Yellow River Basin. Land 2023, 12, 59. [Google Scholar] [CrossRef]
- Lu, X.H.; Kuang, B.; Li, J. Regional difference decomposition and policy implications of China’s urban land use efficiency under the environmental restriction. Habitat Int. 2018, 77, 32–39. [Google Scholar] [CrossRef]
- Chen, Q.; Zheng, L.; Wang, Y.; Wu, D.; Li, J.F. A comparative study on urban land use eco-efficiency of Yangtze and Yellow rivers in China: From the perspective of spatiotemporal heterogeneity, spatial transition and driving factors. Ecol. Indic. 2023, 151, 110331. [Google Scholar] [CrossRef]
- Song, Y.; Yeung, G.; Zhu, D.L.; Xu, Y.; Zhang, L.X. Efficiency of urban land use in China’s resource-based cities, 2000–2018. Land Use Policy 2022, 115, 106009. [Google Scholar] [CrossRef]
- Xie, H.L.; Wang, W. Spatiotemporal differences and convergence of urban industrial land use efficiency for China’s major economic zones. J. Geogr. Sci. 2015, 25, 1183–1198. [Google Scholar] [CrossRef]
- Skea, J.; Nishioka, S. Policies and practices for a low-carbon society. Clim. Policy 2008, 8, S5–S16. [Google Scholar] [CrossRef]
- Li, H.Y.; Wang, Z.Q.; Zhu, M.Y.; Hu, C.X.; Liu, C. Study on the spatial-temporal evolution and driving mechanism of urban land green use efficiency in the Yellow River Basin cities. Ecol. Indic. 2023, 154, 110672. [Google Scholar] [CrossRef]
- Xue, D.; Yue, L.; Ahmad, F.; Draz, M.U.; Chandio, A.A.; Ahmad, M.; Amin, W. Empirical investigation of urban land use efficiency and influencing factors of the Yellow River basin Chinese cities. Land. Use Policy 2022, 117, 106117. [Google Scholar] [CrossRef]
- Zheng, H.Z.; Wu, Y.J.; He, H.M.; Delang, C.O.; Qian, J.; Lu, J.A.; Yao, Z.Y.; Li, G.Z. Urban land use eco-efficiency and improvement in the western region of China. J. Clean. Prod. 2023, 412, 137385. [Google Scholar] [CrossRef]
- Gao, J.X.; Song, J.B.; Wu, L.F. A new methodology to measure the urban construction land-use efficiency based on the two-stage DEA model. Land. Use Policy 2022, 112, 105799. [Google Scholar] [CrossRef]
- Chen, W.; Ning, S.Y.; Chen, W.J.; Liu, E.N.; Wang, Y.N.; Zhao, M.J. Spatial-temporal characteristics of industrial land green efficiency in China: Evidence from prefecture-level cities. Ecol. Indic. 2020, 113, 106256. [Google Scholar] [CrossRef]
- Su, H.; Yang, S. Spatio-Temporal Urban Land Green Use Efficiency under Carbon Emission Constraints in the Yellow River Basin, China. Int. J. Environ. Res. Public. Health 2022, 19, 12700. [Google Scholar] [CrossRef]
- Ma, D.L.; Zhang, J.W.; An, B.T.; Guo, Z.M.; Zhang, F.T.; Yan, Y.; Peng, G.C. Research on urban land green use efficiency and influencing factors based on DEA and ESTDA models: Taking 284 cities in China as an example. Ecol. Indic. 2024, 160, 111824. [Google Scholar] [CrossRef]
- Yuan, T.; Zhang, J.; Xiang, Y.; Lu, L.Y. Exploring the Temporal and Spatial Evolution Laws of County Green Land-Use Efficiency: Evidence from 11 Counties in Sichuan Province. Buildings 2022, 12, 816. [Google Scholar] [CrossRef]
- Xiao, Y.P.; Ma, D.L.; Zhang, F.T.; Zhao, N.; Wang, L.; Guo, Z.M.; Zhang, J.W.; An, B.T.; Xiao, Y.D. Spatiotemporal differentiation of carbon emission efficiency and influencing factors: From the perspective of 136 countries. Sci. Total Environ. 2023, 879, 163032. [Google Scholar] [CrossRef]
- Zhang, C.Q.; Chen, P.Y. Applying the three-stage SBM-DEA model to evaluate energy efficiency and impact factors in RCEP countries. Energy 2022, 241, 122917. [Google Scholar] [CrossRef]
- Yu, J.Q.; Zhou, K.L.; Yang, S.L. Land use efficiency and influencing factors of urban agglomerations in China. Land Use Policy 2019, 88, 104143. [Google Scholar] [CrossRef]
- Yang, Q.K.; Wang, L.; Qin, X.H.; Fan, Y.T.; Wang, Y.Z.; Ding, L.L. Urban Land Use Efficiency and Contributing Factors in the Yangtze River Delta Under Increasing Environmental Restrictions in China. Chin. Geogr. Sci. 2022, 32, 883–895. [Google Scholar] [CrossRef]
- Tan, S.K.; Hu, B.X.; Kuang, B.; Zhou, M. Regional differences and dynamic evolution of urban land green use efficiency within the Yangtze River Delta, China. Land. Use Policy 2021, 106, 105449. [Google Scholar] [CrossRef]
- Yang, L.S.; Ni, M.Y. Is financial development beneficial to improve the efficiency of green development? Evidence from the “Belt and Road” countries. Energ. Econ. 2022, 105, 105734. [Google Scholar] [CrossRef]
- Zhao, Y.; Jiang, X.; Lu, X.H.; Wang, H.Z. Spatial convergence and its determinants of green urban land use efficiency: Empirical evidence from 284 cities in China. Environ. Dev. Sustain. 2024. [Google Scholar] [CrossRef]
- Ge, K.; Zou, S.; Chen, D.L.; Lu, X.H.; Ke, S.A. Research on the Spatial Differences and Convergence Mechanism of Urban Land Use Efficiency under the Background of Regional Integration: A Case Study of the Yangtze River Economic Zone, China. Land 2021, 10, 1100. [Google Scholar] [CrossRef]
- Zhou, J.L. Spatial-temporal evolution and spatial spillover of the green efficiency of urban construction land in the Yangtze River Economic Belt, China. Sci. Rep. 2023, 13, 14387. [Google Scholar] [CrossRef]
- Chen, Q.; Zheng, L.; Wang, Y.; Wu, D.; Li, J.F. Spillover effects of urban form on urban land use efficiency: Evidence from a comparison between the Yangtze and Yellow Rivers of China. Environ. Sci. Pollut. Res. 2023, 30, 125816–125831. [Google Scholar] [CrossRef]
- Schaltegger, S.; Sturm, A. Ecological rationality: Starting points for the design of ecology-oriented management instruments. Die Unternehm. 1990, 44, 272–290. [Google Scholar]
- WBCSD. Eco-Efficiency: Leadership for Improved Economic and Environmental Performance; WBCSD: Geneva, Switzerland, 1992; Volume 3–16, pp. 3–16. [Google Scholar]
- Moll, S.; Gee, D. Making sustainability accountable: Eco-efficiency, resource productivity and innovation. In Proceedings of the Workshop on the Occasion of the Fifth Anniversary of the European Environment Agency (EEA), Copenhagen, Denmark, 28–30 October 1998. [Google Scholar]
- WB. Inclusive Green Growth; World Bank Publications: Washington, DC, USA, 2012. [Google Scholar]
- Lu, X.; Qu, Y.; Sun, P.L.; Yu, W.; Peng, W.L. Green Transition of Cultivated Land Use in the Yellow River Basin: A Perspective of Green Utilization Efficiency Evaluation. Land 2020, 9, 475. [Google Scholar] [CrossRef]
- Ulman, E.L. American Commodity Flow: A Geographical Interpretation of Rail and Water Traffic based on Principles of Spatial Interchange; University of Washington Press: Seattle, WA, USA, 1957. [Google Scholar]
- Magistretti, S.; Dell’Era, C.; Doppio, N. Design sprint for SMEs: An organizational taxonomy based on configuration theory. Manag. Decis. 2020, 58, 1803–1817. [Google Scholar] [CrossRef]
- Zimmerman, D.J. Peer effects in academic outcomes: Evidence from a natural experiment. Rev. Econ. Stat. 2003, 85, 9–23. [Google Scholar] [CrossRef]
- Glaeser, E.L.; Sacerdote, B.I.; Scheinkman, J.A. The Social Multiplier. J. Eur. Econ. Assoc. 2003, 1, 345–353. [Google Scholar] [CrossRef]
- Xu, J.J.; Wang, J.C.; Yang, X.J.; Xiong, C.Q. Peer effects in local government decision-making: Evidence from urban environmental regulation. Sustain. Cities Soc. 2022, 85, 104066. [Google Scholar] [CrossRef]
- Zhang, Y.; Dai, Y.Q.; Ke, X.L. Spatial correlation network of new urbanization in China and its impact on land use eco-efficiency—Based on the perspective of network node centrality. China Land Sci. 2023, 37, 117–129. [Google Scholar]
- Zhu, X.H.; Zhang, P.F.; Wei, Y.G.; Li, Y.; Zhao, H.R. Measuring the efficiency and driving factors of urban land use based on the DEA method and the PLS-SEM model-A case study of 35 large and medium-sized cities in China. Sustain. Cities Soc. 2019, 50, 101646. [Google Scholar] [CrossRef]
- He, J.H.; Pan, Z.Z.; Liu, D.F.; Guo, X.N. Exploring the regional differences of ecosystem health and its driving factors in China. Sci. Total Environ. 2019, 673, 553–564. [Google Scholar] [CrossRef]
- Liu, W.W.; Guo, Z.L.; Jiang, B.; Lu, F.; Wang, H.N.; Wang, D.A.; Zhang, M.Y.; Cui, L.J. Improving wetland ecosystem health in China. Ecol. Indic. 2020, 113, 106184. [Google Scholar] [CrossRef]
- Pastor, J.T.; Lovell, C.A.K. A global Malmquist productivity index. Econ. Lett. 2005, 88, 266–271. [Google Scholar] [CrossRef]
- Sheather, S.J. Density estimation. Stat. Sci. 2004, 19, 588–597. [Google Scholar] [CrossRef]
- Wu, C.; Ye, X.Y.; Du, Q.Y.; Luo, P. Spatial effects of accessibility to parks on housing prices in Shenzhen, China. Habitat Int. 2017, 63, 45–54. [Google Scholar] [CrossRef]
- Sun, L.C.; Qin, L.; Taghizadeh-Hesary, F.; Zhang, J.J.; Mohsin, M.; Chaudhry, I.S. Analyzing carbon emission transfer network structure among provinces in China: New evidence from social network analysis. Environ. Sci. Pollut. Res. 2020, 27, 23281–23300. [Google Scholar] [CrossRef]
- Huo, T.F.; Cao, R.J.; Xia, N.N.; Hu, X.; Cai, W.G.; Liu, B.S. Spatial correlation network structure of China’s building carbon emissions and its driving factors: A social network analysis method. J. Environ. Manag. 2022, 320, 115808. [Google Scholar] [CrossRef] [PubMed]
- Hu, F.; Qiu, L.P.; Wei, S.B.; Zhou, H.Y.; Bathuure, I.A.; Hu, H. The spatiotemporal evolution of global innovation networks and the changing position of China: A social network analysis based on cooperative patents. RD Manag. 2024, 54, 574–589. [Google Scholar] [CrossRef]
- Edelmann, D.; Móri, T.F.; Székely, G.J. On relationships between the Pearson and the distance correlation coefficients. Stat. Probabil Lett. 2021, 169, 108960. [Google Scholar] [CrossRef]
- Ma, D.L.; Zhang, J.W.; Zhang, F.T.; Xiao, Y.P.; Tan, H.M.; Guo, Z.M.; An, B.T. What were the spatiotemporal evolution characteristics and the influencing factors of urban land green use efficiency? A case study of the Yangtze River Economic Belt. Environ. Monit. Assess 2023, 195, 806. [Google Scholar] [CrossRef]
- Hu, W.B.; Li, Z.F.; Chen, D.L.; Zhu, Z.Y.; Peng, X.T.; Liu, Y.B.; Liao, D.M.; Zhao, K. Unlocking the potential of collaborative innovation to narrow the inter-city urban land green use efficiency gap: Empirical study on 19 urban agglomerations in China. Environ. Impact Asses 2024, 104, 107341. [Google Scholar] [CrossRef]
- Ma, L.D.; Xu, W.X.; Zhang, W.Y.; Ma, Y.A. Effect and mechanism of environmental regulation improving the urban land use eco-efficiency: Evidence from China. Ecol. Indic. 2024, 159, 111602. [Google Scholar] [CrossRef]
- North, M.A. A Method for Implementing a Statistically Significant Number of Data Classes in the Jenks Algorithm. In Proceedings of the FSKD 2009, Sixth International Conference on Fuzzy Systems and Knowledge Discovery, Tianjin, China, 14–16 August 2009; Volume 6. [Google Scholar]
- Zhang, L.Y.; Xiao, Y.; Guo, Y.M.; Qian, X.M. Spatial-temporal distribution and key factors of urban land use ecological efficiency in the Loess Plateau of China. Sci. Rep. 2023, 13, 22306. [Google Scholar] [CrossRef]
Variable Type | Variable | Interpretation of the Indicator |
---|---|---|
Input indicator | Land input | Built-up area/km2 |
Capital input | Capital stock of non-farm fixed asset investment/CNY 104 | |
Labor input | Number of employees in secondary and tertiary industries/104 | |
Energy input | Total energy consumption (104 tons of standard coal) | |
Expected output indicator | Economic output | Secondary and tertiary GDP/CNY 108 |
Social output | Social development index (weighted according to four dimensions: population growth, wage level, medical resources, and education support) | |
Ecological output | Green coverage rate of built district (%) | |
Undesired output indicator | Main sources of pollution | Weighted sum of urban industrial wastewater, industrial sulfur dioxide, and industrial soot emissions/t |
Area/Year | 2003 | 2005 | 2008 | 2010 | 2013 | 2015 | 2018 | 2020 | |
---|---|---|---|---|---|---|---|---|---|
Low efficiency (<0.17) | Northwest | 10.25 | 10.95 | 9.54 | 8.48 | 6.71 | 5.30 | 1.06 | 5.65 |
Eastern | 23.67 | 22.26 | 21.20 | 20.49 | 16.25 | 14.50 | 1.41 | 7.77 | |
Central | 26.50 | 26.50 | 24.38 | 23.32 | 22.26 | 19.80 | 2.83 | 11.00 | |
Western | 24.73 | 25.44 | 22.61 | 23.67 | 21.91 | 18.70 | 1.77 | 9.54 | |
Total | 85.16 | 85.16 | 77.74 | 75.97 | 67.14 | 58.30 | 7.07 | 33.90 | |
Medium–low efficiency (0.18–0.30) | Northwest | 1.06 | 0.35 | 2.12 | 2.83 | 3.89 | 5.65 | 6.01 | 3.53 |
Eastern | 3.53 | 4.24 | 5.65 | 6.01 | 11.31 | 12.00 | 14.80 | 12.70 | |
Central | 1.06 | 1.77 | 3.53 | 4.95 | 5.65 | 7.77 | 18.70 | 11.70 | |
Western | 2.47 | 1.77 | 4.95 | 4.24 | 6.01 | 8.48 | 19.80 | 11.70 | |
Total | 8.13 | 8.13 | 16.25 | 18.02 | 26.86 | 33.90 | 59.40 | 29.60 | |
Medium–high efficiency (0.31–0.57) | Northwest | 0.35 | 0.35 | 0.35 | 0.35 | 1.41 | 1.06 | 4.59 | 2.47 |
Eastern | 1.41 | 1.41 | 1.41 | 1.77 | 2.83 | 3.18 | 9.54 | 4.24 | |
Central | 0.71 | 0.00 | 0.00 | 0.00 | 0.35 | 0.71 | 4.95 | 4.24 | |
Western | 0.00 | 0.71 | 1.77 | 0.71 | 1.41 | 2.12 | 6.01 | 5.30 | |
Total | 2.47 | 2.47 | 3.53 | 2.83 | 6.01 | 7.07 | 25.10 | 16.30 | |
High efficiency (>0.58) | Northwest | 0.35 | 0.35 | 0.00 | 0.35 | 0.00 | 0.00 | 0.35 | 0.35 |
Eastern | 1.77 | 2.47 | 2.12 | 2.12 | 0.00 | 0.71 | 4.59 | 5.65 | |
Central | 0.00 | 0.00 | 0.35 | 0.00 | 0.00 | 0.00 | 1.77 | 1.41 | |
Western | 2.12 | 1.41 | 0.00 | 0.71 | 0.00 | 0.00 | 1.77 | 2.83 | |
Total | 4.24 | 4.24 | 2.47 | 3.18 | 0.00 | 0.71 | 8.48 | 10.30 |
Year | Degree Centrality (%) | Closeness Centrality (%) | Betweenness Centrality (%) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Region | 2003 | 2009 | 2015 | 2020 | 2003 | 2009 | 2015 | 2020 | 2003 | 2009 | 2015 | 2020 | |
Northwest | 32.09 | 31.72 | 31.11 | 29.52 | 61.48 | 60.78 | 60.31 | 59.05 | 0.23 | 0.18 | 0.15 | 0.08 | |
East | 47.69 | 45.18 | 46.78 | 49.62 | 68.78 | 67.29 | 67.80 | 69.03 | 0.47 | 0.41 | 0.40 | 0.43 | |
West | 31.26 | 32.52 | 33.64 | 32.22 | 59.51 | 60.12 | 60.58 | 60.04 | 0.07 | 0.10 | 0.11 | 0.09 | |
Central | 34.24 | 36.33 | 36.58 | 37.22 | 60.76 | 61.97 | 62.02 | 62.50 | 0.11 | 0.17 | 0.17 | 0.19 | |
Overall | 37.20 | 37.35 | 38.16 | 38.60 | 62.92 | 62.90 | 63.15 | 63.35 | 0.22 | 0.22 | 0.22 | 0.22 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, M.; Hu, P.; Zhang, A. Spatiotemporal Evolution and Spatial Correlation Network Characteristics of Urban Land Green Use Efficiency in China: A Network Centrality Analysis Perspective. Land 2025, 14, 1164. https://doi.org/10.3390/land14061164
Liu M, Hu P, Zhang A. Spatiotemporal Evolution and Spatial Correlation Network Characteristics of Urban Land Green Use Efficiency in China: A Network Centrality Analysis Perspective. Land. 2025; 14(6):1164. https://doi.org/10.3390/land14061164
Chicago/Turabian StyleLiu, Mengba, Ping Hu, and Anlu Zhang. 2025. "Spatiotemporal Evolution and Spatial Correlation Network Characteristics of Urban Land Green Use Efficiency in China: A Network Centrality Analysis Perspective" Land 14, no. 6: 1164. https://doi.org/10.3390/land14061164
APA StyleLiu, M., Hu, P., & Zhang, A. (2025). Spatiotemporal Evolution and Spatial Correlation Network Characteristics of Urban Land Green Use Efficiency in China: A Network Centrality Analysis Perspective. Land, 14(6), 1164. https://doi.org/10.3390/land14061164