Potato Cultivation Under Zero Tillage and Straw Mulching: Option for Land and Cropping System Intensification for Indian Sundarbans
Abstract
:1. Introduction
- (i)
- The selection of a potato variety suitable for zero-tillage systems of management (ZTSM).
- (ii)
- The optimization of foliar nutrient management for enhancing the performance of potatoes grown in the ZTSM system.
- (iii)
- The efficacy of the application of various biostimulants on the growth, yield, and tuber quality of potatoes grown under the ZTSM system.
- (iv)
- The estimation of the potential adoption of the ZTSM method among the farming community of the Indian Sundarbans delta.
2. Materials and Methods
2.1. Origin of the Technologies
2.2. Description of the Experimental Area
2.3. Experimental Details
2.3.1. Experimental Design and Treatment Details
2.3.2. Time of Sowing of Zero Tillage Potato
2.3.3. Land Preparation
2.3.4. Selection of Seed Tubers
2.3.5. Seed Treatment
2.3.6. Planting of Tubers
2.3.7. Nutrient Management
2.3.8. Irrigation
2.3.9. De-Haulming and Harvesting
2.4. Crop Measurements
2.4.1. Biometrical Measurements and Estimation of Yield
2.4.2. Quality Parameters of Potato Tubers
2.5. Analysis of Soil Samples
2.6. Preparation of the Location Map
2.7. Estimation of Potential Adoption
2.8. Statistical Analysis
3. Results
3.1. Growth Parameters of Potato
3.2. Yield Components and Yield of Potatoes
3.3. Quality Parameters of Potatoes
3.4. Effect on Soil Moisture and Salinity
3.5. Field Demonstration
3.6. Potential Adoption of the Innovation
4. Discussions
4.1. Zero-Tillage Potato as Low-Cost Intensification Technology
4.2. Performance of ZTSM POTATO
4.3. Soil Salinity and Soil Moisture Retention
4.4. Adoption of the Innovation
4.5. Limitation and Future Strategies
5. Conclusions
- The results revealed that Kufri Chandramukhi performed the best among all the tested potato varieties. However, Kufri Pukhraj was selected for the upcoming experiment due to its short duration and early bulking rate. The highest growth, yield, and quality of potato was achieved with the application of 2% urea at 30 and 50 days after planting, along with 0.1% boron applied 30 days after planting in the ZTSM potato cultivation. Among the biostimulant treatments, the foliar application of 5% Sargassum-based seaweed extract and humic acid at 30 and 50 days after planting recorded the highest growth, yield, and quality parameters of potatoes under zero-tillage systems of management and, in the case of various foliar nutrients and growth regulators, the combined application of 2% days after planting, 2% MOP, and 0.1% triacontanol 0.05% EC at 30 and 50 days after planting led to the recording of the highest of all the growth, yield and quality parameters. The technology was widely accepted and adapted by the farming community, with an increase in practicing farmers from 23 to 1100, covering an area measuring 15 ha.
- The Zero-Tillage System of Management (ZTSM) for potato cultivation offers a low-cost, sustainable intensification strategy in the Indian Sundarbans, enhancing food and nutritional security for a large number of smallholder farmers in the region.
- ZTSM optimizes sowing windows and resource utilization and manages risks for smallholders. It results in positive ecosystem services by saving water, improving soil health, and preventing weed growth and salinity buildup.
- ZTSM accommodates the greater participation of women, without adding to their workload, thus offsetting labor crises in the region, which has a historically high incidence of male outmigration.
- The significant greening of previously fallow lands in the region demonstrates ZTSM’s role in landscape-scale agricultural transformation. The innovation presents a transformative opportunity for sustainable agriculture in the Indian Sundarbans. However, realizing its full potential requires strategic investments in farmer education, targeted advisory, and economic integration to achieve widespread, enduring impact. The widespread adoption of ZTSM requires supportive policies emphasizing resource efficiency, gender inclusion, and sustainable farming practices.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kundu, R.; Brahmachari, K.; Roychoudhury, S. Nutrient management in rice-lentil (paira)-sesame cropping system under coastal saline zone of West Bengal. Int. J. Agric. Sci. 2012, 8, 320–324. [Google Scholar]
- Mandal, S.; Maji, B.; Sarangi, S.K.; Mahanta, K.K.; Mandal, U.K.; Burman, D.; Digar, S.; Mainuddin, M.; Sharma, P.C. Economics of cropping system intensification for small-holder farmers in coastal salt-affected areas in West Bengal: Options, challenges and determinants. Decision 2020, 47, 19–33. [Google Scholar] [CrossRef]
- Kumar, P.; Sarangi, S.K.; Mahajan, G.R.; Das, B.; Uthappa, A.R.; Desai, S.; Paramesh, V. Paradigm shift in coastal agricultural research: From production to risk management. Indian J. Agron. 2023, 68, S198–S211. [Google Scholar]
- Bandyopadhyay, B.K.; Burman, D.; Mandal, S. Improving agricultural productivity in degraded coastal land of India-experiences gained and lessons learned. J. Indian Soc. Coast. Agric. Res. 2011, 29, 1–9. [Google Scholar]
- Mandal, S.; Sarangi, S.K.; Burman, D.; Bandyopadhyay, B.K.; Maji, B.; Mandal, U.K.; Sharma, D.K. Land shaping models for enhancing agricultural productivity in salt-affected coastal areas of West Bengal-An economic analysis. Indian J. Agric. Econ. 2013, 68, 389–401. [Google Scholar]
- Burman, D.; Mandal, S.; Bandopadhyay, B.K.; Maji, B.; Sharma, D.K.; Mahanta, K.K.; Sarangi, S.K.; Mandal, U.K.; Patra, S.; De, S.; et al. Unlocking production potential of degraded coastal land through innovative land management practices: A synthesis. J. Soil Salin. Water Qual. 2015, 7, 12–18. [Google Scholar]
- Campbell, J.; Whittingham, E.; Townsley, P. Responding to coastal poverty: Should we be doing things differently or doing different things. In Environment and Livelihoods in Tropical Coastal Zones; CABI: Wallingford, UK, 2006; pp. 274–292. [Google Scholar]
- Tenhunen, S.; Uddin, M.J.; Roy, D. Confronting Climate Change in the Sundarbans in Coastal India and Bangladesh. Wisdom Lett. 2024, 2024. [Google Scholar] [CrossRef]
- Sarkar, S.; Brahmachari, K.; Gaydon, D.S.; Dhar, A.; Dey, S.; Mainuddin, M. Options for Intensification of Cropping System in Coastal Saline Ecosystem: Inclusion of Grain Legumes in Rice-Based Cropping System. Soil Syst. 2024, 8, 90. [Google Scholar] [CrossRef]
- Humphreys, A.; Gorsky, A.L.; Bilkovic, D.M.; Chambers, R.M. Changes in plant communities of low-salinity tidal marshes in response to sea-level rise. Ecosphere 2021, 12, e03630. [Google Scholar] [CrossRef]
- Paul PL, C.; Bell, R.W.; Barrett-Lennard, E.G.; Kabir, E. Straw mulch and irrigation affect solute potential and sunflower yield in a heavy textured soil in the Ganges Delta. Agric. Water Manag. 2020, 239, 106211. [Google Scholar] [CrossRef]
- Sarkar, S.; Gaydon, D.S.; Dey, S.; Chaki, A.K.; Brahmachari, K.; Dhar, A.; Garai, S.; Mainuddin, M. Evaluation of the APSIM Model in Rice-Lentil Cropping System in a Complex Coastal Saline Environment. J. Indian Soc. Coast. Agric. Res. 2024, 42, 53–72. [Google Scholar] [CrossRef]
- Dagar, J.C.; Sharma, P.C.; Chaudhari, S.K.; Jat, H.S.; Ahamad, S. Climate change vis-a-vis saline agriculture: Impact and adaptation strategies. Innov. Saline Agric. 2016, 5–53. [Google Scholar] [CrossRef]
- Mondal, R.I.; Begum, F.; Aziz, A.; Sharif, S.H. Crop sequences for increasing cropping intensity and productivity. SAARC J. Agric. 2015, 13, 135–147. [Google Scholar] [CrossRef]
- Singh, B.P.; Singh, B.; Lal, M.K. Seven decades of potato research in India: Achievements and future thrusts. Int. J. Innov. Hortic. 2022, 11, 158–183. [Google Scholar] [CrossRef]
- Rana, R.K.; Anwer, M.D. Potato production scenario and analysis of its total factor productivity in India. Indian J. Agric. Sci. 2018, 88, 1354–1361. [Google Scholar] [CrossRef]
- Bajracharya, M.; Sapkota, M. Profitability and productivity of potato (Solanum tuberosum) in Baglung district, Nepal. Agric. Food Secur. 2017, 6, 47. [Google Scholar] [CrossRef]
- Jasim, A.H.; Hussein, M.J.; Nayef, M.N. Effect of foliar fertilizer (high in potash) on growth and yield of seven potato cultivars (Solanum tuberosom L.). Euphrates J. Agric. Sci. 2013, 5, 1–7. [Google Scholar]
- Meena, B.P.; Kumar, A.; Lal, B.; Meena, R.L.; Shirale, A.O.; Dotaniya, M.L.; Kumar, K.; Sinha, N.K.; Meena, S.N.; Asha, R.; et al. Sustainability of popcorn-potato cropping system improves due to organic manure application and its effect on soil health. Potato Res. 2019, 62, 253–279. [Google Scholar] [CrossRef]
- Kumar, R.; Mishra, J.S.; Upadhyay, P.K.; Hans, H. Rice fallows in the eastern India: Problems and prospects. Indian J. Agric. Sci. 2019, 89, 567–577. [Google Scholar] [CrossRef]
- Mangalassery, S.; Sjögersten, S.; Sparkes, D.L.; Sturrock, C.J.; Craigon, J.; Mooney, S.J. To what extent can zero tillage lead to a reduction in greenhouse gas emissions from temperate soils? Sci. Rep. 2014, 4, 4586. [Google Scholar] [CrossRef]
- Zhao, X.; Liu, S.L.; Pu, C.; Zhang, X.Q.; Xue, J.F.; Zhang, R.; Wang, Y.Q.; Lal, R.; Zhang, H.L.; Chen, F. Methane and nitrous oxide emissions under no-till farming in China: A meta-analysis. Glob. Change Biol. 2016, 22, 1372–1384. [Google Scholar] [CrossRef] [PubMed]
- Sarangi, S.K.; Singh, S.; Kumar, V.; Srivastava, A.K.; Sharma, P.C.; Johnson, D.E. Tillage and crop establishment options for enhancing the productivity, profitability, and resource use efficiency of rice-rabi systems of the salt-affected coastal lowlands of eastern India. Field Crops Res. 2020, 247, 107494. [Google Scholar] [CrossRef]
- Zuber, S.M.; Villamil, M.B. Meta-analysis approach to assess effect of tillage on microbial biomass and enzyme activities. Soil Biol. Biochem. 2016, 97, 176–187. [Google Scholar] [CrossRef]
- Sarangi, S.K.; Maji, B.; Sharma, P.C.; Digar, S.; Mahanta, K.K.; Burman, D.; Mandal, U.K.; Mandal, S.; Mainuddin, M. Potato (Solanum tuberosum L.) cultivation by zero tillage and paddy straw mulching in the saline soils of the Ganges Delta. Potato Res. 2021, 64, 277–305. [Google Scholar] [CrossRef]
- Mainuddin, M.; Bell, R.W.; Sarangi, S.K.; Maniruzzaman, M.; Pena-Arancibia, J.L.; Gaydon, D.S.; Karim, F.; Monjardino, M.; Glover, M.; Brahmachari, K.; et al. Mitigating risk and scaling-out profitable cropping system intensification practices in the salt-affected coastal zone of the Ganges Delta. J. Indian Soc. Coast. Agric. Res. 2024, 42, 1–13. [Google Scholar] [CrossRef]
- Census of India. District Census Handbook: South 24 Parganas, Village and Town Wise Primary Census Abstract, Series 20, Part XII-B, Directorate of Census Operation, Govt. of West Bengal. New Delhi: Census of India. 2011. Available online: www.censusindia.gov.in (accessed on 20 May 2020).
- Mila, A.J.; Bell, R.W.; Barrett-Lennard, E.G.; Kabir, E. Salinity dynamics and water availability in water bodies over a dry season in the Ganges Delta. Future Sustain. Agric. Saline Environ. 2021, 305–322. [Google Scholar] [CrossRef]
- Sarangi, S.K.; Mainuddin, M.; Bell, R.W.; Digar, S. Rice-zero tillage potato-green gram and conservation agriculture enable sustainable intensification in the Coastal Region. J. Indian Soc. Coast. Agric. Res. 2024, 42. [Google Scholar] [CrossRef]
- Pandey, N.K.; Kharumnuid, P.; Kumar, S.; Chakrabarti, S.K.; Bhardwaj, V. Economic Impact of Early Bulking and Drought-Tolerant Potato Cultivar Kufri Pukhraj in India. Potato Res. 2024, 67, 1469–1482. [Google Scholar] [CrossRef]
- Tyl, C.; Sadler, G.D. pH and titratable acidity. Food Anal. 2017, 4, 389–406. [Google Scholar]
- Casanas, R.; González, M.; Rodríguez, E.; Marrero, A.; Díaz, C. Chemo−metric studies of chemical compounds in five cultivars of potatoes from Tenerife. J. Agric. Food Chem. 2002, 50, 2076–2082. [Google Scholar] [CrossRef]
- Gould, W.A. Specific gravity of potatoes. In Potato Production, Processing and Technology; CTI Publications Inc.: Baltimore, MD, USA, 1999; pp. 51–72. [Google Scholar]
- Westermann, D.; James, D.; Tindall, T.; Hurst, R. Nitrogen and Potassium fertilization of potatoes: Yield and specific gravity. Am. Potato J. 1994, 71, 417–432. [Google Scholar] [CrossRef]
- Bouyoucos, G.J. Hydrometer method improved for making particle size analyses of soils. Agron. J. 1962, 54, 464–465. [Google Scholar] [CrossRef]
- Brady, N.C.; Weil, R.R. The Nature and Properties of Soils, 3rd ed.; Pearson Education Asia: Delhi, India, 2002; p. 960. [Google Scholar]
- Walkley, A.J.; Black, I.A. An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Sci. 1934, 37, 29–38. [Google Scholar] [CrossRef]
- Bhattacharyya, K.; Das, T.; Ray, K.; Dutta, S.; Majumdar, K.; Pari, A.; Banerjee, H. Yield of and nutrient–water use by maize exposed to moisture stress and K fertilizers in an inceptisol of West Bengal, India. Agric. Water Manag. 2018, 206, 31–41. [Google Scholar] [CrossRef]
- Visconti, F.; De Paz, J.M.; Rubio, J.L. An empirical equation to calculate soil solution electrical conductivity at 25 C from major ion concentrations. Eur. J. Soil Sci. 2010, 61, 980–993. [Google Scholar] [CrossRef]
- Kuehne, G.; Llewellyn, R.; Pannell, D.; Wilkinson, R.; Dolling, P.; Ouzman, J.; Ewing, M. Predicting farmer uptake of new agricultural practices: A tool for research, extension and policy. Agric. Syst. 2017, 156, 115–125. [Google Scholar] [CrossRef]
- Gomez, K.A.; Gomez, A.A. Statistical Procedures for Agricultural Research; John Wiley & Sons: Hoboken, NJ, USA, 1984. [Google Scholar]
- Goswami, R.; Roy, R.; Gangopadhyay, D.; Sen, P.; Roy, K.; Sarkar, S.; Misra, S.; Ray, K.; Monjardino, M.; Mainuddin, M. Understanding Resource Recycling and Land Management to Upscale Zero-Tillage Potato Cultivation in the Coastal Indian Sundarbans. Land 2024, 13, 108. [Google Scholar] [CrossRef]
- Ramírez, D.A.; Silva-Díaz, C.; Ninanya, J.; Carbajal, M.; Rinza, J.; Kakraliya, S.K.; Gatto, M.; Kreuze, J. Potato zero-tillage and mulching is promising in achieving agronomic gain in Asia. Agronomy 2022, 12, 1494. [Google Scholar] [CrossRef]
- Paul PL, C.; Bell, R.W.; Barrett-Lennard, E.G.; Kabir, E. Variation in the yield of sunflower (Helianthus annuus L.) due to differing tillage systems is associated with variation in solute potential of the soil solution in a salt-affected coastal region of the Ganges Delta. Soil Tillage Res. 2020, 197, 104489. [Google Scholar] [CrossRef]
- Devi, S.; Gupta, C.; Jat, S.L.; Parmar, M.S. Crop residue recycling for economic and environmental sustainability: The case of India. Open Agric. 2017, 2, 486–494. [Google Scholar] [CrossRef]
- Mondal, M.K.; Paul, P.; Humphreys, E.; Tuong, T.; Ritu, S.; Rashid, M.; Humphreys, E.; Buisson, M.; Pukinskis, I.; Phillips, M. Opportunities for cropping system intensification in the coastal zone of Bangladesh. In Proceedings of the CPWF, GBDC, WLE Conference on Revitalizing the Ganges Coastal Zone: Turning Science into Policy and Practices, Dhaka, Bangladesh, 21–23 October 2015; Humphreys, E., Tuong, T.P., Marie-Charlotte, B., Pukinskis, I., Phillips, M., Eds.; CGIAR Challenge Program on Water and Food (CPWF): Colombo, Sri Lanka, 2015; pp. 449–476. [Google Scholar]
- Satapathy, B.S.; Singh, T.; Pun, K.B.; Saikia, K.; Rautaray, S.K. Influence of dates of planting and mulching on growth and tuber yield of potato (Solanum tuberosum) in rice (Oryza sativa) fallows of shallow lowland of Asom. Indian J. Agron. 2016, 61, 455–459. [Google Scholar] [CrossRef]
- Sadawarti, M.J.; Singh, S.P.; Kumar, V.; Lal, S.S. Effect of mulching and irrigation scheduling on potato cultivar Kufri Chipsona-1 in Central India. Potato J. 2013, 40. [Google Scholar]
- Sarkar, S.; Dey, S.; Dhar, A.; Banerjee, H. Boron nutrition in tuber crops: An inclusive insight. Int. J. Veg. Sci. 2024, 30, 470–496. [Google Scholar] [CrossRef]
- Ramírez, D.A.; Hossain, M.M.; Rahaman, E.S.; Mestanza, C.; Rinza, J.; Ninanya, J.; de Mendiburu, F.; Loayza, H.; Gatto, M.; Kreuze, J.F. Potato production under zero tillage with rice straw mulching as a promissory technology to diversify rice-based systems in Southwest Coastal Bangladesh. J. Agric. Food Res. 2025, 19, 101603. [Google Scholar] [CrossRef]
- Kumar, P.; Kumar, A.; Kumar, N.; Ahamad, A.; Verma, M.K. Effect of integrated nutrient management on productivity and nutrients availability of potato. Int. J. Curr. Microbiol. Appl. Sci. 2017, 6, 1429–1436. [Google Scholar] [CrossRef]
- Mozumder, M.; Banerjee, H.; Ray, K.; Paul, T. Evaluation of potato (Solanum tuberosum) cultivars for productivity, nitrogen requirement and eco-friendly indices under different nitrogen levels. Indian J. Agron. 2014, 59, 327–335. [Google Scholar] [CrossRef]
- Bhandari, S.; Bhandari, A.; Shrestha, J. Effect of different doses of triacontanol on growth and yield of kohlrabi (Brassica oleracea L. var. gongylodes). Heliyon 2021, 7. [Google Scholar] [CrossRef]
- Qadri RW, K.; Khan, I.; Jahangir, M.M.; Ashraf, U.; Samin, G.; Anwer, A.; Bashir, M. Phosphorous and foliar applied nitrogen improved productivity and quality of potato. Am. J. Plant Sci. 2015, 6, 144–149. [Google Scholar] [CrossRef]
- Mallick, S.; Ghosh, R.K.; Pal, D. Effect of triacontanol on the growth and yield of potato. J. Crop Weed 2009, 5, 154–156. [Google Scholar]
- Dwivedi, S.K.; Kumar, A.; Pal, A.; Sriwastava, L.K.; Meshram, M. Effect of seaweed saps on growth, nutrient uptake and yield of potato (Solanum tuberosum L.). Appl. Biol. Res. 2016, 18, 1–7. [Google Scholar] [CrossRef]
- Abd El-Mageed, T.A.; Semida, W.M.; Abd El-Wahed, M.H. Effect of mulching on plant water status, soil salinity and yield of squash under summer-fall deficit irrigation in salt affected soil. Agric. Water Manag. 2016, 173, 1–12. [Google Scholar] [CrossRef]
- Bhanwaria, R.; Singh, B.; Musarella, C.M. Effect of organic manure and moisture regimes on soil physiochemical properties, microbial biomass Cmic: Nmic: Pmic turnover and yield of mustard grains in arid climate. Plants 2022, 11, 722. [Google Scholar] [CrossRef] [PubMed]
- Mao, X.; Yang, Y.; Guan, P.; Geng, L.; Ma, L.; Di, H.; Liu, W.; Li, B. Remediation of organic amendments on soil salinization: Focusing on the relationship between soil salts and microbial communities. Ecotoxicol. Environ. Saf. 2022, 239, 113616. [Google Scholar] [CrossRef] [PubMed]
- Fuglie, K.O. Conservation tillage and pesticide use in the cornbelt. J. Agric. Appl. Econ. 1999, 31, 133–147. [Google Scholar] [CrossRef]
- Bader, C.; Stumpenhausen, J.; Bernhardt, H. Prediction of the Spatial and Temporal Adoption of an Energy Management System in Automated Dairy Cattle Barns in Bavaria-“CowEnergySystem. Energies 2024, 17, 435. [Google Scholar] [CrossRef]
- Chandra, P.; Bhattacharjee, T.; Bhowmick, B. Does technology transfer training concern for agriculture output in India? A critical study on a lateritic zone in West Bengal. J. Agribus. Dev. Emerg. Econ. 2018, 8, 339–362. [Google Scholar] [CrossRef]
- Varshney, D.; Joshi, P.K.; Kumar, A.; Mishra, A.K.; Dubey, S.K. Examining the transfer of knowledge and training to smallholders in India: Direct and spillover effects of agricultural advisory services in an emerging economy. World Dev. 2022, 160, 106067. [Google Scholar] [CrossRef]
- Ojah, A.; Bhattacharjee, D. Zero tillage (ZT) potato cultivation. Bhartiya Krishi Anusandhan Patrika 2021, 36, 347–349. [Google Scholar] [CrossRef]
- Sarangi, S.; Maji, B.; Digar, S.; Mahanta, K.K.; Sharma, P.C.; Mainuddin, M. Zero tillage potato cultivation is an innovative technology for coastal saline soils. Indian Farming 2018, 68, 23–26. [Google Scholar]
- Parihar, C.; Singh, S.P.; Sharma, S.K.; Sadawarti, M.J.; Gupta, V.; Harsha; Chauhan, A.P.S.; Gupta, S.; Kumar, G. Effect of Zero Tillage Practices on the Economic Performance of Potato. J. Exp. Agric. Int. 2024, 46, 812–818. [Google Scholar] [CrossRef]
- Chettri, P.; Goswami, S.B. Effect of crop and non crop mulch management under varying moisture regimes on the growth and yield of zero tillage potato in rain-fed low land rice eco system. Int. J. Curr. Microbiol. Appl. Sci. 2018, 7, 2334–2339. [Google Scholar] [CrossRef]
- Saimon, A.H.; Mannan, M.A.; Sultana, S.; Mondal, A.R. Effect of straw and plastic mulches on growth and yield of zero tillage potato (Solanum tuberosum L.) in the Coastal Khulna Region of Bangladesh. Int. J. Hortic. Sci. 2024, 30, 23–30. [Google Scholar] [CrossRef]
Potato Cultivars | Tuber Number/ha (×105) | Tuber Yield (t/ha) |
---|---|---|
K. Chandramukhi | 2.23 a | 19.6 ab |
K. Jyoti | 2.07 a | 19.3 ab |
S-52 | 2.30 a | 18.0 ab |
S-6 | 2.29 a | 22.4 a |
Local | 1.65 b | 11.9 b |
Foliar Nutrient Treatments | Tuber Number/ha (×105) | Tuber Yield (t/ha) |
---|---|---|
Control | 2.05 | 21.3 |
RDFNPK fb Urea 2% fs 30 DAP | 2.23 | 23.3 |
RDFNPK fb Urea 2% fs 30 & 50 DAP | 2.29 | 24.1 |
RDFNPK fb MOP 2% fs 30 DAP | 2.30 | 22.4 |
RDFNPK fb Urea 2% fs 30 & 50 DAP + MOP 2% fs 30 DAP | 2.39 | 22.8 |
RDFNPK fb Boron 0.1% fs 30 DAP | 2.80 | 24.5 |
RDFNPK fb Urea 2% fs 30 & 50 DAP + Boron 0.1% fs 30 DAP | 2.92 | 26.3 |
RDFNPK fb Zinc 0.5% fs 30 DAP | 2.27 | 22.5 |
RDFNPK fb Urea 2% fs 30 & 50 DAP + Zinc 0.5% fs 30 DAP | 2.69 | 24.1 |
SEm± | 0.14 | 0.26 |
CD (p ≤ 0.05) | 0.42 | 0.79 |
Bio Stimulants Treatments | Tuber Number/ha (×105) | Tuber Yield (t/ha) |
---|---|---|
Control | 4.41 | 20.1 |
RDFNPK fb Sargassum 5% fs 30 DAP | 5.77 | 24.4 |
RDFNPK fb Sargassum 5% fs 30 DAP & 50 DAP | 6.93 | 24.6 |
RDFNPK fb Sargassum + humic acid 5% fs 30 DAP | 6.32 | 25.1 |
RDFNPK fb Sargassum + humic acid 5% fs 30 DAP & 50 DAP | 7.76 | 27.5 |
RDFNPK fb Triacontanol (0.05% EC) 0.1% fs 30 DAP | 5.06 | 22.3 |
RDFNPK fb Triacontanol (0.05% EC) 0.1% fs 30 DAP & 50 DAP | 5.54 | 23.8 |
RDFNPK + Water | 4.57 | 21.0 |
SEm± | 0.22 | 0.52 |
CD (p ≤ 0.05) | 0.64 | 1.51 |
Bio Stimulants Treatments | Tuber Number/ha (×105) | Tuber Yield (t/ha) |
---|---|---|
Water Spray | 5.28 | 21.6 |
RDF NPK fb DAP 2% fs 30 DAP | 5.55 | 25.1 |
RDF NPK fb DAP 2% fs 30 & 50 DAP | 6.11 | 25.4 |
RDF NPK fb MOP 2% fs 30 DAP | 5.28 | 24.0 |
RDF NPK fb MOP 2% fs 30 & 50 DAP | 5.55 | 24.3 |
RDF NPK fb DAP 2% & MOP 2% fs 30 DAP | 5.83 | 25.2 |
RDF NPK fb DAP 2% & MOP 2% fs 30 and 50 DAP | 6.39 | 25.9 |
RDF NPK fb DAP 2% + MOP 2% & Triacontanol (0.05% EC) 0.1% fs 30 and 50 DAP | 6.67 | 26.2 |
SEm± | 0.29 | 0.30 |
CD (p ≤ 0.05) | 0.89 | 0.91 |
Sl. No | Year | Variety | Demonstration | Area (ha) | Farmers Involved | ||
---|---|---|---|---|---|---|---|
Location | Male | Female | Total | ||||
1 | 2020–2021 | Kufri pukhraj | Rangabelia (Site-I) | 4.2 | 95 | 76 | 171 |
2 | 2021–2022 | Kufri pukhraj | Rangabelia (Site-I) Satjelia (Site-II) | 3.06 | 142 | 88 | 230 |
3 | 2022–2023 | Kufri pukhraj | Rangabelia (Site-I) | 4.33 | 195 | 130 | 325 |
Satjelia (Site-II) | |||||||
Choto Mollakhali (Site-III) | |||||||
4 | 2023–2024 | Kufri pukhraj | Rangabelia (Site-I) Satjelia (Site-II) Choto Mollakhali (Site-III) | 4.00 | 195 | 105 | 300 |
Location | N | Year | Yield (t/ha) | Gross Return (INR per ha) | Net Return (INR per ha) | B:C Ratio |
---|---|---|---|---|---|---|
Satjelia | 57 | 2022–23 | 12.28 (±5.31) | 147,321 (±63,694) | 94,701 (±47,886) | 2.88 (±0.71) |
50 | 2023–24 | 8.7 (±4.32) | 157,324 (±51,858) | 104,400 (±51,919) | 2.97 (±0.99) | |
Choto Mollakhali | 58 | 2022–23 | 12.85 (±5.93) | 154,153 (±71,215) | 89,830 (±60,615) | 2.73 (±1.17) |
36 | 2023–24 | 9.9 (±4.70) | 205,461 (±66,220) | 131,833 (±65,652) | 2.79 (±0.88) | |
Rangabelia | 10 | 2022–23 | 14.00 (±1.00) | 205,411 (±18,216) | 117,447 (±13,309) | 2.68 (±0.19) |
14 | 2023–24 | 7.2 (±1.96) | 161,228 (±24,313) | 87,576 (±24,112) | 2.18 (±0.32) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dey, S.; Sarkar, S.; Dhar, A.; Brahmachari, K.; Ghosh, A.; Goswami, R.; Mainuddin, M. Potato Cultivation Under Zero Tillage and Straw Mulching: Option for Land and Cropping System Intensification for Indian Sundarbans. Land 2025, 14, 563. https://doi.org/10.3390/land14030563
Dey S, Sarkar S, Dhar A, Brahmachari K, Ghosh A, Goswami R, Mainuddin M. Potato Cultivation Under Zero Tillage and Straw Mulching: Option for Land and Cropping System Intensification for Indian Sundarbans. Land. 2025; 14(3):563. https://doi.org/10.3390/land14030563
Chicago/Turabian StyleDey, Saikat, Sukamal Sarkar, Anannya Dhar, Koushik Brahmachari, Argha Ghosh, Rupak Goswami, and Mohammed Mainuddin. 2025. "Potato Cultivation Under Zero Tillage and Straw Mulching: Option for Land and Cropping System Intensification for Indian Sundarbans" Land 14, no. 3: 563. https://doi.org/10.3390/land14030563
APA StyleDey, S., Sarkar, S., Dhar, A., Brahmachari, K., Ghosh, A., Goswami, R., & Mainuddin, M. (2025). Potato Cultivation Under Zero Tillage and Straw Mulching: Option for Land and Cropping System Intensification for Indian Sundarbans. Land, 14(3), 563. https://doi.org/10.3390/land14030563