Measurement and Simulation of Soil Water Contents in an Experimental Field in Delta Plain
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site, Soil Sampling and Instrumentation
2.2. Mathematic Model and Parameters
2.2.1. Equations of Saturated-Unsaturated Soil Water Flow
2.2.2. Rainfall Infiltration
2.2.3. Potential Evapotranspiration
2.3. Boundary Conditions
2.4. Model Calibration
3. Results and Discussion
3.1. Data Set Analysis
3.1.1. Effect of Rainfall on the Soil Water Content
3.1.2. Combined Effects of Rainfall and Water Table Depth on Soil Water Content
3.2. Parameter Calibration and Model Validation
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Brauer, C.C.; Teuling, A.J.; Torfs, P.J.J.F.; Uijlenhoet, R. The wageningen lowland runoff simulator (walrus): A lumped rainfall-runoff model for catchments with shallow groundwater. Geosci. Model Dev. 2014, 7, 2313–2332. [Google Scholar] [CrossRef] [Green Version]
- Yan, R.; Gao, J.; Dong, C.; Huang, J. Assessment of ecosystem services for polder terrestrial ecosystem in the Taihu Basin. Res. Environ. Sci. 2015, 28, 393–400. [Google Scholar]
- Wandee, P. Optimization of Water Management in Polder Areas: Some Examples for the Temperate Humid and the Humid Tropical Zone. Ph.D. Thesis, Wageningen University, Wageningen, The Netherlands, 2005. [Google Scholar]
- Koch, S.; Bauwe, A.; Lennartz, B. Application of the swat model for a tile-drained lowland catchment in north-eastern Germany on subbasin scale. Water Resour. Manag. 2013, 27, 791–805. [Google Scholar] [CrossRef]
- Northcott, W.J.; Cooke, R.A.; Walker, S.E.; Mitchell, J.K.; Hirschi, M.C. Modeling flow on tile-drained watershed using a GIS-integrated DRAINMOD. Trans. ASAE 2002, 45, 1405–1423. [Google Scholar] [CrossRef]
- Vereecken, H.; Huisman, J.A.; Pachepsky, Y.; Montzka, C.; Kruk, J.V.D.; Bogena, H.; Weihermüllera, M.; Herbsta, M.; Martinezb, G.; Vanderborghta, J.; et al. On the spatio-temporal dynamics of soil moisture at the field scale. J. Hydrol. 2014, 516, 76–96. [Google Scholar] [CrossRef]
- Cornelissen, T.; Diekkrüger, B.; Bogena, H.R. Significance of scale and lower boundary condition in the 3D simulation of hydrological processes and soil moisture variability in a forested headwater catchment. J. Hydrol. 2014, 516, 140–153. [Google Scholar] [CrossRef]
- Romano, N. Soil moisture at local scale: Measurements and simulations. J. Hydrol. 2014, 516, 6–20. [Google Scholar] [CrossRef]
- Servadio, P. Applications of empirical methods in central Italy for predicting field wheeled and tracked vehicle performance. Soil Tillage Res. 2010, 110, 236–242. [Google Scholar] [CrossRef]
- Servadio, P.; Bergonzoli, S.; Beni, C. Soil tillage systems and wheat yield under climate change scenarios. Agronomy 2016, 6, 43. [Google Scholar] [CrossRef]
- Western, A.W.; Zhou, S.L.; Grayson, R.B.; McMahon, T.A.; Blöschl, G.; Wilson, D.J. Spatial correlation of soil moisture in small catchments and its relationship to dominant spatial hydrological processes. J. Hydrol. 2004, 286, 113–134. [Google Scholar] [CrossRef]
- Schwärzel, K.; Menzer, A.; Clausnitzer, F.; Spank, U.; Häntzschel, J.; Grünwald, T.; Köstner, B.; Bernhofer, C.; Feger, K.H. Soil water content measurements deliver reliable estimates of water fluxes: A comparative study in a beech and a spruce stand in the Tharandt forest (Saxony, Germany). Agric. For. Meteorol. 2009, 149, 1994–2006. [Google Scholar] [CrossRef]
- Schume, H.; Jost, G.; Hager, H. Soil water depletion and recharge patterns in mixed and pure forest stands of European beech and Norway spruce. J. Hydrol. 2004, 289, 258–274. [Google Scholar] [CrossRef]
- Jost, G.; Schume, H.; Hager, H. Factors controlling soil water-recharge in a mixed European beech (Fagus sylvatica L.)–Norway spruce [Picea abies (L.) Karst.] stand. Eur. J. For. Res. 2004, 123, 93–104. [Google Scholar] [CrossRef]
- Grayson, R.B.; Western, A.W.; Chiew, F.H.S.; Böschl, G. Preferred states in spatial soil moisture patterns: Local and nonlocal controls. Water Resour. Res. 1997, 33, 2897–2908. [Google Scholar] [CrossRef]
- Vereecken, H.; Kamai, T.; Harter, T.; Kasteel, R.; Hopmans, J.; Vanderborght, J. Explaining soil moisture variability as a function of mean soil moisture: A stochastic unsaturated flow perspective. Geophys. Res. Lett. 2007, 34, 315–324. [Google Scholar] [CrossRef]
- Beni, C.; Servadio, P.; Marconi, S.; Neri, U.; Aromolo, R.; Diana, G. Anaerobic digestate administration: Effect on soil physical and mechanical behavior. Commun. Soil Sci. Plant Anal. 2012, 43, 821–834. [Google Scholar] [CrossRef]
- Pan, F.; Peters-Lidard, C.D. On the relationship between mean and variance of soil moisture fields. J. Am. Water Resour. Assoc. 2008, 44, 235–242. [Google Scholar] [CrossRef]
- Ivanov, V.Y.; Fatichi, S.; Jenerette, G.D.; Espeleta, J.F.; Troch, P.A.; Huxman, T.E. Hysteresis of soil moisture spatial heterogeneity and the ‘‘homogenizing’’ effect of vegetation. Water Resour. Res. 2010, 46. [Google Scholar] [CrossRef]
- Rosenbaum, U.; Bogena, H.R.; Herbst, M.; Huisman, J.A.; Peterson, T.J.; Weuthen, A.; Western, A.W.; Vereecken, H. Seasonal and event dynamics of spatial soil moisture patterns at the small catchment scale. Water Resour. Res. 2012, 48, 3472–3476. [Google Scholar] [CrossRef]
- Servadio, P.; Bergonzoli, S.; Verotti, M. Delineation of management zones based on soil mechanical-chemical properties to apply variable rates of inputs throughout a field (VRA). Eng. Agric. Environ. Food 2017, 10, 20–30. [Google Scholar] [CrossRef]
- Motz, L.H.; Dogan, A. Saturated-unsaturated 3D Groundwater Model. I: Development. J. Hydrol. Eng. 2005, 10, 492–504. [Google Scholar]
- Fares, A.; Temimi, M.; Morgan, K.; Kelleners, T.J. In-situ and remote soil moisture sensing technologies for vadose zone hydrology. Vadose Zone J. 2013, 12, 332–338. [Google Scholar] [CrossRef]
- Robinson, D.A.; Binley, A.; Crook, N.; Day-Lewis, F.D.; Ferré, T.P.A.; Grauch, V.J.S.; Knight, R.; Knoll, M.; Lakshmi, V.; Miller, R.; et al. Advancing process-based watershed hydrological research using near-surface geophysics: A vision for and review of, electrical and magnetic geophysical methods. Hydrol. Process. 2008, 22, 3604–3635. [Google Scholar] [CrossRef]
- Robinson, D.A.; Campbell, C.S.; Hopmans, J.W.; Hornbuckle, B.K.; Jones, S.B.; Knight, R.; Ogden, F.; Selker, J.; Wendroth, O. Soil moisture measurement for ecological and hydrological watershed-scale observatories: A review. Vadose Zone J. 2008, 7, 358–389. [Google Scholar] [CrossRef]
- Vereecken, H.; Huisman, J.A.; Bogena, H.; Vanderborght, J.; Vrugt, J.A.; Hopmans, J.W. On the value of soil moisture measurements in vadose zone hydrology: A review. Water Resour. Res. 2008, 44, 253–270. [Google Scholar] [CrossRef]
- Seneviratne, S.I.; Corti, T.; Davin, E.L.; Hirschi, M.; Jaeger, E.B.; Lehner, I.; Orlowsky, B.; Teuling, A.J. Investigating soil moisture–climate interactions in a changing climate: A review. Earth Sci. Rev. 2010, 99, 125–161. [Google Scholar] [CrossRef]
- Zhu, Q.; Liao, K.; Xu, Y.; Yang, G.; Wu, S.; Zhou, S. Monitoring and prediction of soil moisture spatial-temporal variations from a hydropedological perspective: A review. Soil Res. 2012, 50, 625–637. [Google Scholar] [CrossRef]
- Topp, G.C.; Davis, J.L.; Annan, A.P. Electromagnetic determination of soil water content: Measurements in coaxial transmission lines. Water Resour. Res. 1980, 16, 574–582. [Google Scholar] [CrossRef]
- Simunek, J.; Sejna, M.; van Genuchten, M.T. The HYDRUS-1D software package for simulating the one-dimensional movement of water, heat and multiple solutes in variably-saturated media. In Version 4.0. HYDRUS; University of California Riverside: Riverside, CA, USA, 2008. [Google Scholar]
- Šimunek, J.; Genuchten, M.T.V.; Šejna, M. Recent developments and applications of the HYDRUS computer software packages. Vadose Zone J. 2016, 6. [Google Scholar] [CrossRef]
- Dash, C.J.; Sarangi, A.; Singh, D.K.; Singh, A.K.; Adhikary, P.P. Prediction of root zone water and nitrogen balance in an irrigated rice field using a simulation model. Paddy Water Environ. 2015, 13, 281–290. [Google Scholar] [CrossRef]
- Garg, K.K.; Das, B.S.; Safeeq, M.; Bhadoria, P.B.S. Measurement and modeling of soil water regime in a lowland paddy field showing preferential transport. Agric. Water Manag. 2009, 96, 1705–1714. [Google Scholar] [CrossRef]
- Sander, T.; Gerke, H. Modelling field-data of preferential flow in paddy soil induced by earthworm burrows. J. Contam. Hydrol. 2009, 104, 126–136. [Google Scholar] [CrossRef] [PubMed]
- Tan, X.; Shao, D.; Liu, H. Simulating soil water regime in lowland paddy fields under different water managements using HYDRUS-1D. Agric. Water Manag. 2014, 132, 69–78. [Google Scholar] [CrossRef]
- Rühle, F.A.; Klier, C.; Stumpp, C. Changes in water flow and solute transport pathways during long-term column experiments. Vadose Zone J. 2013, 12, 918–924. [Google Scholar] [CrossRef]
- Rühle, F.A.; Netzer, F.V.; Lueders, T.; Stumpp, C. Response of transport parameters and sediment microbiota to water table fluctuations in laboratory columns. Vadose Zone J. 2015, 10, 1623–1636. [Google Scholar] [CrossRef]
- Yakirevich, A.; Gish, T.J.; Imunek, J.; Genuchten, M.T.V.; Pachepsky, Y.A.; Nicholson, T.J.; Cady, R.E. Potential impact of a seepage face on solute transport to a pumping well. Vadose Zone J. 2010, 9, 686–698. [Google Scholar] [CrossRef]
- Pachepsky, Y.A.; Guber, A.K.; Yakirevich, A.M.; Mckee, L.; Cady, R.E.; Nicholson, T.J. Scaling and pedotransfer in numerical simulations of flow and transport in soils. Vadose Zone J. 2014, 13. [Google Scholar] [CrossRef]
- Šimunek, J.; Van Genuchten, M.T.; Šejna, M. HYDRUS: Model use, calibration and validation. Trans. ASABE 2012, 55, 1561–1574. [Google Scholar]
- Morbidelli, R.; Saltalippi, C.; Flammini, A.; Rossi, E.; Corradini, C. Soil water content vertical profiles under natural conditions: Matching of experiments and simulations by a conceptual model. Hydrol. Process. 2013, 28, 4732–4742. [Google Scholar] [CrossRef]
- Sophocleous, M.A.; Koelliker, J.K.; Govindaraju, R.S.; Birdie, T.; Ramireddygari, S.R.; Perkins, S.P. Integrated numerical modeling for basin-wide water management: The case of the rattlesnake creek basin in south-central Kansas. J. Hydrol. 1999, 214, 179–196. [Google Scholar] [CrossRef]
- Zhang, B.; Lerner, D.N. Modeling of ground water flow to adits. Groundwater 2010, 38, 99–105. [Google Scholar] [CrossRef]
- Labolle, E.M.; Ahmed, A.A.; Fogg, G.E. Review of the integrated groundwater and surface-water model (IGSM). Groundwater 2003, 41, 238–246. [Google Scholar] [CrossRef]
- Demetriou, C.; Punthakey, J.F. Evaluating sustainable groundwater management options using the mike she integrated hydrogeological modelling package. Environ. Model. Softw. 1998, 14, 129–140. [Google Scholar] [CrossRef]
- Narasimhan, T.N. Something to think about … Darcy-Buckingham’s law. Groundwater 1998, 36, 194–195. [Google Scholar] [CrossRef]
- Celia, M.A.; Bouloutas, E.T.; Zarba, R.L. A general mass-conservative numerical solution for the unsaturated flow equation. Water Resour. Res. 1990, 26, 1483–1496. [Google Scholar] [CrossRef]
- Genuchten, M.T.V.; Nielsen, D.R. On describing and predicting the hydraulic properties of unsaturated soil. Ann. Geophys. 1985, 3, 615–628. [Google Scholar]
- Paniconi, C.; Aldama, A.A.; Wood, E.F. Numerical evaluation of iterative and noniterative methods for the solution of the nonlinear Richards equation. Water Resour. Res. 1991, 27, 1147–1163. [Google Scholar] [CrossRef]
- Fares, A. Environmental Impact of Unharvested Forest Buffer Zones upon Cypress-Pond System in Coastal Plains Regions: Modeling Analyses. Ph.D. Thesis, University of Florida, Gainesville, FL, USA, 1996. [Google Scholar]
- Hou, L.; Wang, X.S.; Hu, B.X.; Shang, J.; Wan, L. Experimental and numerical investigations of soil water balance at the hinterland of the Badain Jaran Desert for groundwater recharge estimation. J. Hydrol. 2016, 540, 386–396. [Google Scholar] [CrossRef]
- Schwen, A.; Bodner, G.; Loiskandl, W. Time-variable soil hydraulic properties in near-surface soil water simulations for different tillage methods. Agric. Water Manag. 2011, 99, 42–50. [Google Scholar] [CrossRef]
- Geris, J.; Tetzlaff, D.; Mcdonnell, J.J.; Soulsby, C. Spatial and temporal patterns of soil water storage and vegetation water use in humid northern catchments. Sci. Total Environ. 2017, 595, 486–493. [Google Scholar] [CrossRef] [PubMed]
- Schindler, U.; Müller, L.; Behrendt, A. Field investigations of soil hydrological properties of fen soils in North-East Germany. J. Plant Nutr. Soil Sci. 2003, 166, 364–369. [Google Scholar] [CrossRef]
- García, G.M.; Pachepsky, Y.A.; Vereecken, H. Effect of soil hydraulic properties on the relationship between the spatial mean and variability of soil moisture. J. Hydrol. 2014, 516, 154–160. [Google Scholar] [CrossRef]
- Wang, N.Q.; Wang, Q.T.; Liu, X.L.; Pang, Q. Prediction study of capillary rise height on unsaturated soil. Adv. Mater. Res. 2013, 860–863, 1260–1264. [Google Scholar] [CrossRef]
- Al-Samahiji, D.; Houston, S.; Houston, W. Degree and extent of wetting due to capillary rise in soils. Transp. Res. Rec. 2000, 1709, 114–120. [Google Scholar] [CrossRef]
- Amer, A.M. Water flow and conductivity into capillary and non-capillary pores of soils. J. Soil Sci. Plant Nutr. 2012, 12, 99–112. [Google Scholar] [CrossRef]
- Huza, J.; Teuling, A.J.; Braud, I.; Grazioli, J.; Melsen, L.A.; Nord, G.; Raupach, T.H.; Uijlenhoet, R. Precipitation, soil moisture and runoff variability in a small river catchment (Ardèche, France) during hymex special observation period 1. J. Hydrol. 2014, 516, 330–342. [Google Scholar] [CrossRef] [Green Version]
- Lin, G.; Wang, T.; Zheng, X. Assessing effects of soil hydraulic properties on the temporal stability of absolute soil moisture content and soil moisture anomaly under different climatic conditions. Environ. Earth Sci. 2016, 75, 143. [Google Scholar] [CrossRef]
- Brocca, L.; Ciabatta, L.; Massari, C.; Camici, S.; Tarpanelli, A. Soil moisture for hydrological applications: Open questions and new opportunities. Water 2017, 9, 140. [Google Scholar] [CrossRef]
- Dogan, A.; Motz, L.H. Saturated-unsaturated 3D groundwater model. II: Verification and application. J. Hydrol. Eng. 2005, 10, 505–515. [Google Scholar] [CrossRef]
- Porporato, A.; Daly, E.; Rodrigueziturbe, I. Soil water balance and ecosystem response to climate change. Am. Nat. 2004, 164, 625–632. [Google Scholar] [CrossRef] [PubMed]
- Ojha, R.; Morbidelli, R.; Saltalippi, C.; Flammini, A.; Rao, S.G. Scaling of surface soil moisture over heterogeneous fields subjected to a single rainfall event. J. Hydrol. 2014, 516, 21–36. [Google Scholar] [CrossRef]
Soil Sample at Different Depths | Unit Weight (g/cm3) | Saturated Hydraulic Conductivity (10−4 cm/s) | Grain Composition (Particle Diameter) | ||
---|---|---|---|---|---|
<0.002 (%) | 0.002–0.05 (%) | >0.05 (%) | |||
N10 cm | 1.24 | 7.44 | 29.87 | 57.07 | 13.07 |
N20 cm | 1.13 | 13.08 | 27.20 | 60.80 | 12.00 |
N40 cm | 1.44 | 17.71 | 27.73 | 65.07 | 7.20 |
N60 cm | 1.43 | 23.60 | 33.60 | 59.73 | 6.67 |
N100 cm | 1.48 | 5.24 | 42.13 | 52.80 | 5.07 |
C10 cm | 1.12 | 21.98 | 30.40 | 58.67 | 10.93 |
C20 cm | 1.35 | 2.49 | 29.87 | 61.87 | 8.27 |
C40 cm | 1.50 | 8.89 | 28.80 | 61.33 | 9.87 |
C60 cm | 1.47 | 14.98 | 33.60 | 61.33 | 5.07 |
C100 cm | 1.43 | 7.10 | 39.47 | 56.53 | 4.00 |
S10 cm | 1.24 | 31.11 | 32.00 | 54.40 | 13.60 |
S20 cm | 1.21 | 22.14 | 30.40 | 60.27 | 9.33 |
S40 cm | 1.46 | 8.05 | 31.47 | 63.47 | 5.07 |
S60 cm | 1.47 | 9.27 | 32.00 | 62.40 | 5.60 |
S100 cm | 1.48 | 1.23 | 40.53 | 53.33 | 6.13 |
Figure 5 | Rainfall Amount (mm) | Rainfall Intensity (mm/h) | Rainfall Duration (mm) | Water Table Depth 1 (m) | Water Table Depth 2 (m) | Water Table Variation (m) |
---|---|---|---|---|---|---|
(b) | 9.3 | 1.47 | 6.33 | 0.955 | 1.034 | –0.079 |
(c) | 17.5 | 2.19 | 8.0 | 1.255 | 1.190 | 0.065 |
(d) | 30.8 | 6.16 | 5.0 | 1.160 | 0.800 | 0.360 |
(e) | 72.3 | 16.07 | 4.5 | 1.423 | 0.840 | 0.583 |
(f) | 138.6 | 5.78 | 24.0 | 0.290 | 0.238 | 0.052 |
Pearson Correlation Coefficient | ||
---|---|---|
Soil Depths(cm) | P-θ | H-θ |
10 cm | 0.327 | –0.680 |
20 cm | 0.202 | –0.785 |
40 cm | 0.179 | –0.811 |
60 cm | 0.151 | –0.759 |
100 cm | 0.175 | –0.925 |
Depth | θr | θs | α (1/cm) | n | Ks (10−4 cm/s) | l |
---|---|---|---|---|---|---|
0~15 cm | 0.10 | 0.46 | 0.013 | 1.48 | 2.6 | 0.5 |
15~30 cm | 0.10 | 0.42 | 0.0116 | 1.35 | 1.7 | 0.5 |
30~55 cm | 0.10 | 0.42 | 0.009 | 1.38 | 0.8 | 0.5 |
55~80 cm | 0.10 | 0.50 | 0.010 | 1.43 | 0.4 | 0.5 |
80~200 cm | 0.10 | 0.49 | 0.010 | 1.42 | 0.5 | 0.5 |
Soil Depths (cm) | Volumetric Soil Water Content | |||
---|---|---|---|---|
RMSE (cm3·cm−3) | RE (%) | R2 | ||
Model calibration | 10 | 0.0363 | 9.03 | 0.8920 |
20 | 0.0343 | 9.25 | 0.9516 | |
40 | 0.0225 | 4.84 | 0.8818 | |
60 | 0.0239 | 4.34 | 0.9494 | |
100 | 0.0094 | 0.35 | 0.6769 | |
Model validation | 10 | 0.0348 | 5.13 | 0.7072 |
20 | 0.0216 | 1.09 | 0.6309 | |
40 | 0.0152 | 1.28 | 0.9030 | |
60 | 0.0198 | 2.87 | 0.9431 | |
100 | 0.0047 | 0.08 | 0.8755 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hua, W.; Wang, C.; Chen, G.; Yang, H.; Zhai, Y. Measurement and Simulation of Soil Water Contents in an Experimental Field in Delta Plain. Water 2017, 9, 947. https://doi.org/10.3390/w9120947
Hua W, Wang C, Chen G, Yang H, Zhai Y. Measurement and Simulation of Soil Water Contents in an Experimental Field in Delta Plain. Water. 2017; 9(12):947. https://doi.org/10.3390/w9120947
Chicago/Turabian StyleHua, Wenjuan, Chuanhai Wang, Gang Chen, Hai Yang, and Yue Zhai. 2017. "Measurement and Simulation of Soil Water Contents in an Experimental Field in Delta Plain" Water 9, no. 12: 947. https://doi.org/10.3390/w9120947