Artificial Intelligence (AI) in Surface Water Management: A Comprehensive Review of Methods, Applications, and Challenges
Abstract
:1. Introduction
2. Methods
2.1. Literature Search and Data Sources
- “Artificial Intelligence in hydrology”;
- “AI-based flood prediction”;
- “Machine Learning in water infrastructure”;
- “Real-time water monitoring using AI”;
- “AI for dam operation”;
- “Hybrid hydrological modeling”;
- “Explainable AI in water systems”;
- “Ethics in AI water management”.
2.2. Review Structure and Thematic Analysis
3. Traditional vs. AI Approach
4. AI Integration in Surface Flow Management
4.1. Overview of AI Models in Surface Flow Management
4.2. AI Applications in Hydrology
4.3. AI in Water Infrastructure: Dams, Irrigation, and Drainage
4.4. AI in Real-Time Monitoring
4.5. Challenges and Ethical Considerations in AI-Driven Surface Flow Management
4.5.1. Technical and Data-Related Challenges
4.5.2. Institutional and Implementation Barriers and Data-Related Challenges
4.5.3. Ethical and Societal Considerations
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AHP | Analytic Hierarchy Process |
AI | Artificial Intelligence |
ANN | Artificial Neural Network |
BOD | Biochemical Oxygen Demand |
CLP | Constraint Logic Programming |
CNN | Convolutional Neural Network |
CV | Computer Vision |
DL | Deep Learning |
DCGAN | Deep Convolutional Generative Adversarial Network |
DRL | Deep Reinforcement Learning |
EPANET | Environmental Protection Agency Network (Hydraulic Modeling Software) |
FAHP | Fuzzy Analytical Hierarchy Process |
GA | Genetic Algorithm |
GABCds | Gbest-guided Artificial Bee Colony with Directed Scout |
GNN | Graph Neural Network |
GR2M | Génie Rural à 2 paramètres Mensuel (Monthly Water Balance Model) |
GPS | Global Positioning System |
IoT | Internet of Things |
LSTM | Long Short-Term Memory |
MCDA | Multi-Criteria Decision Analysis |
ML | Machine Learning |
MLP | Multilayer Perceptron |
NWM | National Water Model |
PINN | Physics-Informed Neural Network |
PSO | Particle Swarm Optimization |
PSWAT | Parallel Soil and Water Assessment Tool |
RF | Random Forest |
RL | Reinforcement Learning |
RNN | Recurrent Neural Network |
SCADA | Supervisory Control and Data Acquisition |
STA-GRU | Spatio-Temporal Attention Gated Recurrent Unit |
SVM | Support Vector Machine |
SWAT | Soil and Water Assessment Tool |
TOPSIS | Technique for Order of Preference by Similarity to Ideal Solution |
WDN | Water Distribution Network |
WEAP | Water Evaluation and Planning System |
XAI | Explainable Artificial Intelligence |
XGBoost | Extreme Gradient Boosting |
WQI | Water Quality Index |
References
- Nagireddy, N.R.; Keesara, V.R.; Venkata Rao, G.; Sridhar, V.; Srinivasan, R. Assessment of the Impact of Climate Change on Streamflow and Sediment in the Nagavali and Vamsadhara Watersheds in India. Appl. Sci. 2023, 13, 7554. [Google Scholar] [CrossRef]
- Monjardin, C.E.F.; Senoro, D.B.; Magbanlac, J.J.M.; de Jesus, K.L.M.; Tabelin, C.B.; Natal, P.M. Geo-Accumulation Index of Manganese in Soils Due to Flooding in Boac and Mogpog Rivers, Marinduque, Philippines with Mining Disaster Exposure. Appl. Sci. 2022, 12, 3527. [Google Scholar] [CrossRef]
- Senoro, D.B.; Monjardin, C.E.F.; Fetalvero, E.G.; Benjamin, Z.E.C.; Gorospe, A.F.B.; De Jesus, K.L.M.; Ical, M.L.G.; Wong, J.P. Quantitative Assessment and Spatial Analysis of Metals and Metalloids in Soil Using the Geo-Accumulation Index in the Capital Town of Romblon Province, Philippines. Toxics 2022, 10, 633. [Google Scholar] [CrossRef]
- Chow, V.T.; Maidment, D.R.; Mays, L.W. Applied Hydrology; McGraw-Hill: New York, NY, USA, 1988; ISBN 0-07-100174-3. [Google Scholar]
- Damseth, S.; Thakur, K.; Kumar, R.; Kumar, S.; Mahajan, D.; Kumari, H.; Sharma, D.; Sharma, A.K. Assessing the Impacts of River Bed Mining on Aquatic Ecosystems: A Critical Review of Effects on Water Quality and Biodiversity. HydroResearch 2024, 7, 122–130. [Google Scholar] [CrossRef]
- Banjara, M.; Bhusal, A.; Ghimire, A.B.; Kalra, A. Impact of Land Use and Land Cover Change on Hydrological Processes in Urban Watersheds: Analysis and Forecasting for Flood Risk Management. Geosciences 2024, 14, 40. [Google Scholar] [CrossRef]
- Oyedotun, T.D.T.; Ally, N. Environmental Issues and Challenges Confronting Surface Waters in South America: A Review. Environ. Chall. 2021, 3, 100049. [Google Scholar] [CrossRef]
- Guo, L.; Xie, X.; Zeng, J.; An, N.; Wang, Z.; Gao, L.; Wang, Y.; Yang, J. Optimization Model of Water Resources Allocation in Coal Mine Area Based on Ecological Environment Priority. Water 2023, 15, 1205. [Google Scholar] [CrossRef]
- Nourani, V.; Kalantari, O.; Baghanam, A.H. Two Semidistributed ANN-Based Models for Estimation of Suspended Sediment Load. J. Hydrol. Eng. 2012, 17, 1368–1380. [Google Scholar] [CrossRef]
- Prakash, C.; Ahirwar, A.; Lohani, A.K.; Singh, H.P. Comparative Analysis of HEC-HMS and SWAT Hydrological Models for Simulating the Streamflow in Sub-Humid Tropical Region in India. Environ. Sci. Pollut. Res. 2024, 31, 41182–41196. [Google Scholar] [CrossRef]
- Reichstein, M.; Camps-Valls, G.; Stevens, B.; Jung, M.; Denzler, J.; Carvalhais, N. Prabhat Deep Learning and Process Understanding for Data-Driven Earth System Science. Nature 2019, 566, 195–204. [Google Scholar] [CrossRef]
- Hu, F.; Yang, Q.; Yang, J.; Shao, J.; Wang, G. An Adaptive Rainfall-Runoff Model for Daily Runoff Prediction under the Changing Environment: Stream-LSTM Feichi. J. Build. Eng. 2023, 191, 105910. [Google Scholar] [CrossRef]
- Ye, Y.; Pandey, A.; Bawden, C.; Sumsuzzman, D.M.; Rajput, R.; Shoukat, A.; Singer, B.H.; Moghadas, S.M.; Galvani, A.P. Integrating Artificial Intelligence with Mechanistic Epidemiological Modeling: A Scoping Review of Opportunities and Challenges. Nat. Commun. 2025, 16, 581. [Google Scholar] [CrossRef]
- Karpatne, A.; Atluri, G.; Faghmous, J.H.; Steinbach, M.; Banerjee, A.; Ganguly, A.; Shekhar, S.; Samatova, N.; Kumar, V. Theory-Guided Data Science: A New Paradigm for Scientific Discovery from Data. IEEE Trans. Knowl. Data Eng. 2017, 29, 2318–2331. [Google Scholar] [CrossRef]
- Shen, C. A Transdisciplinary Review of Deep Learning Research and Its Relevance for Water Resources Scientists. Water Resour. Res. 2018, 54, 8558–8593. [Google Scholar] [CrossRef]
- Olawade, D.B.; Wada, O.Z.; Ige, A.O.; Egbewole, B.I.; Olojo, A.; Oladapo, B.I. Artificial Intelligence in Environmental Monitoring: Advancements, Challenges, and Future Directions. Hyg. Environ. Health Adv. 2024, 12, 100114. [Google Scholar] [CrossRef]
- Kratzert, F.; Klotz, D.; Shalev, G.; Klambauer, G.; Hochreiter, S.; Nearing, G. Towards Learning Universal, Regional, and Local Hydrological Behaviors via Machine Learning Applied to Large-Sample Datasets. Hydrol. Earth Syst. Sci. 2019, 23, 5089–5110. [Google Scholar] [CrossRef]
- Duan, Y.; Akula, S.; Kumar, S.; Lee, W.; Khajehei, S. A Hybrid Physics–AI Model to Improve Hydrological Forecasts. Artif. Intell. Earth Syst. 2022, 2, e220023. [Google Scholar] [CrossRef]
- Rajitha, A.; Aravinda, K.; Nagpal, A.; Kalra, R.; Maan, P.; Kumar, A.; Abdul-Zahra, D.S. Machine Learning and AI-Driven Water Quality Monitoring and Treatment. E3S Web Conf. 2024, 505, 3012. [Google Scholar] [CrossRef]
- Mandzhieva, R.; Subhankulova, R. Data-Driven Applications for Wind Energy Analysis and Prediction: The Case of “La Haute Borne” Wind Farm. Digit. Chem. Eng. 2022, 4, 100048. [Google Scholar] [CrossRef]
- Farfán-Durán, J.F.; Cea, L. Streamflow Forecasting with Deep Learning Models: A Side-by-Side Comparison in Northwest Spain. Earth Sci. Inform. 2024, 17, 5289–5315. [Google Scholar] [CrossRef]
- Ghimire, S.; Yaseen, Z.M.; Farooque, A.A.; Deo, R.C.; Zhang, J.; Tao, X. Streamflow Prediction Using an Integrated Methodology Based on Convolutional Neural Network and Long Short-Term Memory Networks. Sci. Rep. 2021, 11, 17497. [Google Scholar] [CrossRef]
- Bounab, R.; Boutaghane, H.; Boulmaiz, T.; Tramblay, Y. Comparison of Machine Learning Algorithms for Daily Runoff Forecasting with Global Rainfall Products in Algeria. Atmosphere 2025, 16, 213. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhou, Z.; Deng, Y.; Pan, D.; Van Griensven Thé, J.; Yang, S.X.; Gharabaghi, B. Daily Streamflow Forecasting Using Networks of Real-Time Monitoring Stations and Hybrid Machine Learning Methods. Water 2024, 16, 1284. [Google Scholar] [CrossRef]
- Perera, U.A.K.K.; Coralage, D.T.S.; Ekanayake, I.U.; Alawatugoda, J.; Meddage, D.P.P. A New Frontier in Streamflow Modeling in Ungauged Basins with Sparse Data: A Modified Generative Adversarial Network with Explainable AI. Results Eng. 2024, 21, 101920. [Google Scholar] [CrossRef]
- Nelemans, P.; Bentivoglio, R.; Buitink, J.; Meshgi, A.; Hrachowitz, M.; Taormina, R. Towards Fully Distributed Rainfall-Runoff Modelling with Graph Neural Networks. In Proceedings of the EGU General Assembly 2024, Vienna, Austria, 14–19 April 2024; p. 6846. [Google Scholar]
- Frincu, R.M. Artificial Intelligence in Water Quality Monitoring: A Review of Water Quality Assessment Applications. Water Qual. Res. J. 2025, 60, 164–176. [Google Scholar] [CrossRef]
- Ryu, Y.M.; Lee, E.H. Development of Dam Inflow Prediction Technique Based on Explainable Artificial Intelligence (XAI) and Combined Optimizer for Efficient Use of Water Resources. Environ. Model. Softw. 2025, 187, 106380. [Google Scholar] [CrossRef]
- Li, Q. River Landform Dynamics Detection and Responses to Morphology Change in the Rivers of North Luzon, the Philippines. Ph.D. Thesis, University of Glasgow, Glasgow, Schotland, 2023. [Google Scholar]
- Wei, H.; Xu, W.; Kang, B.; Eisner, R.; Muleke, A.; Rodriguez, D.; DeVoil, P.; Sadras, V.; Monjardino, M.; Harrison, M.T. Irrigation with Artificial Intelligence: Problems, Premises, Promises. Hum. Centric Intell. Syst. 2024, 4, 187–205. [Google Scholar] [CrossRef]
- Marol, C.; Khanapur, S.; Rathod, J.; Mulla, S.; Bajantri, R. Automated Irrigation System with AI Based. Int. J. Innov. Sci. Res. Technol. 2025, 10, 1917. [Google Scholar]
- Selvam, D.P.; Reddy, G.G.; Kumar, N.M. Designing a Smart and Safe Drainage System Using Artificial Intelligence. Int. J. Eng. Res. Technol. 2020, 9, 497–500. [Google Scholar]
- Camps-Valls, G.; Fernández-Torres, M.Á.; Cohrs, K.H.; Höhl, A.; Castelletti, A.; Pacal, A.; Robin, C.; Martinuzzi, F.; Papoutsis, I.; Prapas, I.; et al. Artificial Intelligence for Modeling and Understanding Extreme Weather and Climate Events. Nat. Commun. 2025, 16, 1919. [Google Scholar] [CrossRef]
- Gacu, J.G.; Garcia, J.D.; Fetalvero, E.G.; Catajay-Mani, M.P.; Monjardin, C.E.F.; Power, C. A Comprehensive Resource Assessment for Wind Power Generation on the Rural Island of Sibuyan, Philippines. Energies 2024, 17, 2055. [Google Scholar] [CrossRef]
- Gacu, J.G.; Monjardin, C.E.F.; Senoro, D.B.; Tan, F.J. Flood Risk Assessment Using GIS-Based Analytical Hierarchy Process in the Municipality of Odiongan, Romblon, Philippines. Appl. Sci. 2022, 12, 9456. [Google Scholar] [CrossRef]
- Gacul, L.-A.; Ferrancullo, D.; Gallano, R.; Fadriquela, K.J.; Mendez, K.J.; Morada, J.R.; Morgado, J.K.; Gacu, J. GIS-Based Identification of Flood Risk Zone in a Rural Municipality Using Fuzzy Analytical Hierarchy Process (FAHP). Rev. Int. Géomatique 2024, 33, 295–320. [Google Scholar] [CrossRef]
- Rafiei-Sardooi, E.; Azareh, A.; Choubin, B.; Mosavi, A.H.; Clague, J.J. Evaluating Urban Flood Risk Using Hybrid Method of TOPSIS and Machine Learning. Int. J. Disaster Risk Reduct. 2021, 66, 102614. [Google Scholar] [CrossRef]
- Behzadian, M.; Kazemzadeh, R.B.; Albadvi, A.; Aghdasi, M. PROMETHEE: A Comprehensive Literature Review on Methodologies and Applications. Eur. J. Oper. Res. 2010, 200, 198–215. [Google Scholar] [CrossRef]
- Al-harbi, K.M.A. The Analytic Hierarchy Process. Eur. J. Oper. Res. 1990, 45, 378. [Google Scholar] [CrossRef]
- Negm, A.M.A.A. Water Pressure Optimisation for Leakage Management Using Deep Reinforcement Learning. Ph.D. Thesis, Lancaster University, Lancasterm, UK, 2024. [Google Scholar]
- Albahri, A.S.; Khaleel, Y.L.; Habeeb, M.A.; Ismael, R.D.; Hameed, Q.A.; Deveci, M.; Homod, R.Z.; Albahri, O.S.; Alamoodi, A.H.; Alzubaidi, L. A Systematic Review of Trustworthy Artificial Intelligence Applications in Natural Disasters. Comput. Electr. Eng. 2024, 118, 109409. [Google Scholar] [CrossRef]
- Yadav, A.; Chithaluru, P.; Singh, A.; Albahar, M.A.; Jurcut, A.; Álvarez, R.M.; Mojjada, R.K.; Joshi, D. Suspended Sediment Yield Forecasting with Single and Multi-Objective Optimization Using Hybrid Artificial Intelligence Models. Mathematics 2022, 10, 4263. [Google Scholar] [CrossRef]
- Samanta, S.; Ale, S.; Bagnall, D.K.; Morgan, C.L.S. Assessing the Watershed-Scale Effects of Tillage Management on Surface Runoff and Sediment Loss Using a Curve Number-Precipitation Relationship Based Approach. J. Hydrol. 2023, 625, 130130. [Google Scholar] [CrossRef]
- Sang, S.; Li, Y.; Zong, S.; Yu, L.; Wang, S.; Liu, Y.; Wu, X.; Song, S.; Wang, X.; Fu, B.; et al. The Modeling Framework of the Coupled Human and Natural Systems in the Yellow River Basin. Geogr. Sustain. 2025, 6, 100294. [Google Scholar] [CrossRef]
- Caetano, J.; Carriço, N.; Covas, D. Lessons Learnt from the Application of MCDA Sorting Methods to Pipe Network Rehabilitation Prioritization. Water 2022, 14, 736. [Google Scholar] [CrossRef]
- Nearing, G.S.; Kratzert, F.; Sampson, A.K.; Pelissier, C.S.; Klotz, D.; Frame, J.M.; Prieto, C.; Gupta, H.V. What Role Does Hydrological Science Play in the Age of Machine Learning? Water Resour. Res. 2021, 57, e2020WR028091. [Google Scholar] [CrossRef]
- Newman, A.J.; Clark, M.P.; Sampson, K.; Wood, A.; Hay, L.E.; Bock, A.; Viger, R.J.; Blodgett, D.; Brekke, L.; Arnold, J.R.; et al. Development of a Large-Sample Watershed-Scale Hydrometeorological Data Set for the Contiguous USA: Data Set Characteristics and Assessment of Regional Variability in Hydrologic Model Performance. Hydrol. Earth Syst. Sci. 2015, 19, 209–223. [Google Scholar] [CrossRef]
- Beck, H.E.; Van Dijk, A.I.J.M.; De Roo, A.; Dutra, E.; Fink, G.; Orth, R.; Schellekens, J. Global Evaluation of Runoff from 10 State-of-the-Art Hydrological Models. Hydrol. Earth Syst. Sci. 2017, 21, 2881–2903. [Google Scholar] [CrossRef]
- Zhao, C.; Mi, F.; Wu, X.; Jiang, K.; Khan, L.; Chen, F. Dynamic Environment Responsive Online Meta-Learning with Fairness Awareness. ACM Trans. Knowl. Discov. Data 2024, 18, 1–23. [Google Scholar] [CrossRef]
- Pan, S.J.; Yang, Q. A Survey on Transfer Learning. IEEE Trans. Knowl. Data Eng. 2010, 22, 1345–1359. [Google Scholar] [CrossRef]
- Willard, J.; Jia, X.; Xu, S.; Steinbach, M.; Kumar, V. Integrating Scientific Knowledge with Machine Learning for Engineering and Environmental Systems. ACM Comput. Surv. 2022, 55, 1–37. [Google Scholar] [CrossRef]
- Binns, R. Fairness in Machine Learning: Lessons from Political Philosophy. Proc. Mach. Learn. Res. 2018, 81, 149–159. [Google Scholar]
- UNESCO. Recommendation on the Ethics of Artificial Intelligence; UNESCO: Paris, France, 2022. [Google Scholar]
- Pathak, S.; Liu, M.; Jato-Espino, D.; Zevenbergen, C. Social, Economic and Environmental Assessment of Urban Sub-Catchment Flood Risks Using a Multi-Criteria Approach: A Case Study in Mumbai City, India. J. Hydrol. 2020, 591, 125216. [Google Scholar] [CrossRef]
- Addor, N.; Newman, A.J.; Mizukami, N.; Clark, M.P. The CAMELS Data Set: Catchment Attributes and Meteorology for Large-Sample Studies. Hydrol. Earth Syst. Sci. 2017, 21, 5293–5313. [Google Scholar] [CrossRef]
- Freiesleben, T.; Grote, T. Beyond Generalization: A Theory of Robustness in Machine Learning. Synthese 2023, 202, 109. [Google Scholar] [CrossRef]
- Mosavi, A.; Ozturk, P.; Chau, K.W. Flood Prediction Using Machine Learning Models: Literature Review. Water 2018, 10, 1536. [Google Scholar] [CrossRef]
- Oyebode, O.; Stretch, D. Neural Network Modeling of Hydrological Systems: A Review of Implementation Techniques. Nat. Resour. Model. 2019, 32, e12189. [Google Scholar] [CrossRef]
- Ighalo, J.O.; Adeniyi, A.G.; Marques, G. Artificial Intelligence for Surface Water Quality Monitoring and Assessment: A Systematic Literature Analysis. Model. Earth Syst. Environ. 2021, 7, 669–681. [Google Scholar] [CrossRef]
- Qin, Z.; Jiang, A.; Faulder, D.; Cladouhos, T.T.; Jafarpour, B. Physics-Guided Deep Learning for Prediction of Energy Production from Geothermal Reservoirs. Geothermics 2024, 116, 102824. [Google Scholar] [CrossRef]
- Kamyab, H.; Khademi, T.; Chelliapan, S.; SaberiKamarposhti, M.; Rezania, S.; Yusuf, M.; Farajnezhad, M.; Abbas, M.; Hun Jeon, B.; Ahn, Y. The Latest Innovative Avenues for the Utilization of Artificial Intelligence and Big Data Analytics in Water Resource Management. Results Eng. 2023, 20, 101566. [Google Scholar] [CrossRef]
- Zou, Y.; Wang, J.; Lei, P.; Li, Y. A Novel Multi-Step Ahead Forecasting Model for Flood Based on Time Residual LSTM. J. Hydrol. 2023, 620, 129521. [Google Scholar] [CrossRef]
- Rana, R.; Kalia, A.; Boora, A.; Alfaisal, F.M.; Alharbi, R.S.; Berwal, P.; Alam, S.; Khan, M.A.; Qamar, O. Artificial Intelligence for Surface Water Quality Evaluation, Monitoring and Assessment. Water 2023, 15, 3919. [Google Scholar] [CrossRef]
- Adewale, B.A.; Ene, V.O.; Ogunbayo, B.F.; Aigbavboa, C.O. A Systematic Review of the Applications of AI in a Sustainable Building’s Lifecycle. Buildings 2024, 14, 2137. [Google Scholar] [CrossRef]
- Mohanty, A.; Sahoo, B.; Kale, R.V. A Hybrid Model Enhancing Streamflow Forecasts in Paddy Land Use-Dominated Catchments with Numerical Weather Prediction Model-Based Meteorological Forcings. J. Hydrol. 2024, 635, 131225. [Google Scholar] [CrossRef]
- Farfán, J.F.; Palacios, K.; Ulloa, J.; Avilés, A. A Hybrid Neural Network-Based Technique to Improve the Flow Forecasting of Physical and Data-Driven Models: Methodology and Case Studies in Andean Watersheds. J. Hydrol. Reg. Stud. 2020, 27, 100652. [Google Scholar] [CrossRef]
- Xiang, Z.; Demir, I. High-Resolution Rainfall-Runoff Modeling Using Graph Neural Network. arXiv 2012, arXiv:2110.10833. [Google Scholar]
- Hosseiny, H.; Nazari, F.; Smith, V.; Nataraj, C. A Framework for Modeling Flood Depth Using a Hybrid of Hydraulics and Machine Learning. Sci. Rep. 2020, 10, 8222. [Google Scholar] [CrossRef]
- Al-Areeq, A.M.; Saleh, R.A.A.; Ghaleb, M.; Abba, S.I.; Yaseen, Z.M. Implication of Novel Hybrid Machine Learning Model for Flood Subsidence Susceptibility Mapping: A Representative Case Study in Saudi Arabia. J. Hydrol. 2024, 630, 130692. [Google Scholar] [CrossRef]
- Gigović, L.; Pamučar, D.; Bajić, Z.; Drobnjak, S. Application of GIS-Interval Rough AHP Methodology for Flood Hazard Mapping in Urban Areas. Water 2017, 9, 360. [Google Scholar] [CrossRef]
- Štilić, A.; Puška, A. Integrating Multi-Criteria Decision-Making Methods with Sustainable Engineering: A Comprehensive Review of Current Practices. Eng 2023, 4, 1536–1549. [Google Scholar] [CrossRef]
- Gacu, J.G.; Monjardin, C.E.F.; de Jesus, K.L.M.; Senoro, D.B. GIS-Based Risk Assessment of Structure Attributes in Flood Zones of Odiongan, Romblon, Philippines. Buildings 2023, 13, 506. [Google Scholar] [CrossRef]
- Liu, J.; Wang, Y.; Lu, Y.; Zhao, P.; Wang, S.; Sun, Y. Application of Remote Sensing and Explainable Artificial Intelligence ( XAI ) for Wildfire Occurrence Mapping in the Mountainous Region of Southwest China. Remote. Sens. 2024, 16, 3602. [Google Scholar] [CrossRef]
- Sit, M.; Demiray, B.Z.; Xiang, Z.; Ewing, G.J.; Sermet, Y.; Demir, I. A Comprehensive Review of Deep Learning Applications in Hydrology and Water Resources. Water Sci. Technol. 2020, 82, 2635–2670. [Google Scholar] [CrossRef]
- Chhuon, K.; Herrera, E.; Nadaoka, K. Application of Integrated Hydrologic and River Basin Management Modeling for the Optimal Development of a Multi-Purpose Reservoir Project. Water Resour. Manag. 2016, 30, 3143–3157. [Google Scholar] [CrossRef]
- Jain, S.; Ramesh, D.; Trivedi, M.C.; Edla, D.R. Evaluation of Metaheuristic Optimization Algorithms for Optimal Allocation of Surface Water and Groundwater Resources for Crop Production. Agric. Water Manag. 2023, 279, 108181. [Google Scholar] [CrossRef]
- Garcia, J.; Gacu, J.; Lawrence, M. Suitability Analysis for Solar PV Farm Installation Using GIS and Analytical Hierarchy Process (AHP) in Simara Island, Province of Romblon, Philippines. E3S Web Conf. 2024, 473, 01013. [Google Scholar] [CrossRef]
- Tursi, M.F.; Anfuso, G.; Matano, F.; Mattei, G.; Aucelli, P.P.C. A Methodological Tool to Assess Erosion Susceptibility of High Coastal Sectors: Case Studies from Campania Region (Southern Italy). Water 2023, 15, 121. [Google Scholar] [CrossRef]
- Cheng, M.; Fang, F.; Pain, C.C.; Navon, I.M. Data-Driven Modelling of Nonlinear Spatio-Temporal Fluid Flows Using a Deep Convolutional Generative Adversarial Network. Comput. Methods Appl. Mech. Eng. 2020, 365, 113000. [Google Scholar] [CrossRef]
- Nourani, V. Using Artificial Neural Networks (ANNs) for Sediment Load Forecasting of Talkherood River Mouth. J. Urban Environ. Eng. 2009, 3, 1–6. [Google Scholar] [CrossRef]
- Reza, S.; Ferreira, M.C.; Machado, J.J.M.; Tavares, J.M.R.S. A Multi-Head Attention-Based Transformer Model for Traffic Flow Forecasting with a Comparative Analysis to Recurrent Neural Networks. Expert Syst. Appl. 2022, 202, 117275. [Google Scholar] [CrossRef]
- Solomatine, D.P.; Ostfeld, A. Data-Driven Modelling: Some Past Experiences and New Approaches. J. Hydroinformatics 2008, 10, 3–22. [Google Scholar] [CrossRef]
- Waqas, M.; Humphries, U.W. A Critical Review of RNN and LSTM Variants in Hydrological Time Series Predictions. MethodsX 2024, 13, 102946. [Google Scholar] [CrossRef]
- Nguyen, D.C.H.; Dandy, G.C.; Maier, H.R.; Ascough, J.C. Improved Ant Colony Optimization for Optimal Crop and Irrigation Water Allocation by Incorporating Domain Knowledge. J. Water Resour. Plan. Manag. 2016, 142, 04016025. [Google Scholar] [CrossRef]
- Rane, N.; Choudhary, S.; Rane, J. Explainable Artificial Intelligence (XAI) Approaches for Transparency and Accountability in Financial Decision-Making. SSRN Electron. J. Prepr. 2023. [Google Scholar] [CrossRef]
- Bonney, M. AI in Water Management: Six Ways Artificial Intelligence Can Help Solve Problems Across the Water Sector—Environmental Finance Center Network. Available online: https://efcnetwork.org/ai-in-water-management-six-ways-artificial-intelligence-can-help-solve-problems-across-the-water-sector/ (accessed on 14 April 2025).
- Infant, S.S.; Vickram, S.; Saravanan, A.; Mathan Muthu, C.M.; Yuarajan, D. Explainable Artificial Intelligence for Sustainable Urban Water Systems Engineering. Results Eng. 2025, 25, 104349. [Google Scholar] [CrossRef]
- Krishnan, S.R.; Nallakaruppan, M.K.; Chengoden, R.; Koppu, S.; Iyapparaja, M.; Sadhasivam, J.; Sethuraman, S. Smart Water Resource Management Using Artificial Intelligence—A Review. Sustainability 2022, 14, 13384. [Google Scholar] [CrossRef]
- Pandey, S. Smart Internet of Things Cloud Computing for AI-Enhanced Smart City Infrastructure Management. Smart Internet Things 2024, 1, 213–225. [Google Scholar]
- Kapelan, Z.; Weisbord, E.; Babovic, V. Artificial Intelligence: Solutions for the Water Sector. In International Water Association; London, UK. 2020, pp. 1–16. Available online: https://iwa-network.org (accessed on 2 June 2025).
- Cao, W.; Wu, X.; Li, J.; Kang, F. A Review of Artificial Intelligence in Dam Engineering. J. Infrastruct. Intell. Resil. 2024, 4, 100122. [Google Scholar] [CrossRef]
- Yigit, Y.; Ferrag, M.A.; Ghanem, M.C.; Sarker, I.H.; Maglaras, L.A.; Chrysoulas, C.; Moradpoor, N.; Tihanyi, N.; Janicke, H. Generative AI and LLMs for Critical Infrastructure Protection: Evaluation Benchmarks, Agentic AI, Challenges, and Opportunities. Sensors 2025, 25, 1666. [Google Scholar] [CrossRef]
- Hariri-Ardebili, M.A.; Mahdavi, G.; Nuss, L.K.; Lall, U. The Role of Artificial Intelligence and Digital Technologies in Dam Engineering: Narrative Review and Outlook. Eng. Appl. Artif. Intell. 2023, 126, 106813. [Google Scholar] [CrossRef]
- Zhang, D. Reinforcement Learning for Control Optimization in Water Industry—A Review. Preprints 2021. Available online: https://www.researchgate.net/publication/352479291_Reinforcement_learning_for_control_optimization_in_water_industry_-_a_review (accessed on 2 June 2025).
- Zhuang, X.; Wang, W.; Su, Y.; Yan, B.; Li, Y.; Li, L.; Hao, Y. Multi-Objective Optimization of Reservoir Development Strategy with Hybrid Artificial Intelligence Method. Expert Syst. Appl. 2024, 241, 122707. [Google Scholar] [CrossRef]
- Vallejo-Gómez, D.; Osorio, M.; Hincapié, C.A. Smart Irrigation Systems in Agriculture: A Systematic Review. Agronomy 2023, 13, 342. [Google Scholar] [CrossRef]
- Elshaikh, A.; Elsheikh, E.; Mabrouki, J. Applications of Artificial Intelligence in Precision Irrigation. J. Environ. Earth Sci. 2024, 6, 176–186. [Google Scholar] [CrossRef]
- Keabetswe, L.; He, Y.; Li, C.; Zhou, Z. Estimating Actual Crop Evapotranspiration by Using Satellite Images Coupled with Hybrid Deep Learning-Based Models in Potato Fields. Agric. Water Manag. 2024, 306, 109191. [Google Scholar] [CrossRef]
- Shahriar, S.; Corradini, M.G.; Sharif, S.; Moussa, M.; Dara, R. The Role of Generative Artificial Intelligence in Digital Agri-Food. J. Agric. Food Res. 2025, 20, 101787. [Google Scholar] [CrossRef]
- Jayakumar, D.; Bouhoula, A.; Al-Zubari, W.K. Unlocking the Potential of Artificial Intelligence for Sustainable Water Management Focusing Operational Applications. Water 2024, 16, 3328. [Google Scholar] [CrossRef]
- Sayers, W.; Savić, D.; Kapelan, Z.; Kellagher, R. Artificial Intelligence Techniques for Flood Risk Management in Urban Environments. Procedia Eng. 2014, 70, 1505–1512. [Google Scholar] [CrossRef]
- Garzón, A.; Kapelan, Z.; Langeveld, J.; Taormina, R. Machine Learning-Based Surrogate Modeling for Urban Water Networks: Review and Future Research Directions. Water Resour. Res. 2022, 58, e2021WR031808. [Google Scholar] [CrossRef]
- Zoppou, C. Review of Urban Storm Water Models. Environ. Model. Softw. 2001, 16, 195–231. [Google Scholar] [CrossRef]
- Pedersen, A.N. The Digital Twin of Urban Drainage Systems—Dynamic Models and Measurements for Error Diagnosis. Ph.D. Thesis, Technical University of Denmark, Kongens Lyngby, Denemark, 2022. [Google Scholar]
- Sangroula, U.; Han, K.H.; Koo, K.M.; Gnawali, K.; Yum, K.T. Optimization of Water Distribution Networks Using Genetic Algorithm Based SOP–WDN Program. Water 2022, 14, 851. [Google Scholar] [CrossRef]
- Cattafi, M.; Gavanelli, M.; Nonato, M.; Alvisi, S.; Franchini, M. Optimal Valve Placement in Water Distribution Networks with CLP(FD). In Proceedings of the IJCAI International Joint Conference on Artificial Intelligence, Beijing, China, 3–9 August 2013; pp. 2987–2991. [Google Scholar]
- Hu, S.; Gao, J.; Zhong, D.; Wu, R.; Liu, L. Real-Time Scheduling of Pumps in Water Distribution Systems Based on Exploration-Enhanced Deep Reinforcement Learning. Systems 2023, 11, 56. [Google Scholar] [CrossRef]
- Simpson, A.R.; Simpson, A.; Murphy, L.; Dandy, G. Pipe Network Optimisation Using Genetic Algorithms by University of Adelaide South Australia 5001 Paper to Be Presented at the ASCE Water Resources Planning and Management Conference Seattle, Washington Using Genetic Algorithms. Proc., ASCE. Water Re. In Proceedings of the ASCE Water Resources Planning and Management Conference, Seattle, WA, USA, 1–5 May 1993. [Google Scholar]
- Islam, N.; Irshad, K. Artificial Ecosystem Optimization with Deep Learning Enabled Water Quality Prediction and Classification Model. Chemosphere 2022, 309, 136615. [Google Scholar] [CrossRef]
- Jenny, H.; Wang, Y.; Garcia Alonso, E.; Minguez, R. Using Artificial Intelligence for Smart Water Management Systems ADB Briefs. 2020; No. 143, Asian Development Bank. Available online: https://www.adb.org/publications/artificial-intelligence-water-supply-ufw (accessed on 2 June 2025).
- Liu, G.; Ouyang, S.; Qin, H.; Liu, S.; Shen, Q.; Qu, Y.; Zheng, Z.; Sun, H.; Zhou, J. Assessing Spatial Connectivity Effects on Daily Streamflow Forecasting Using Bayesian-Based Graph Neural Network. Sci. Total Environ. 2023, 855, 158968. [Google Scholar] [CrossRef]
- Piadeh, F.; Behzadian, K.; Chen, A.S.; Campos, L.C.; Rizzuto, J.P.; Kapelan, Z. Event-Based Decision Support Algorithm for Real-Time Flood Forecasting in Urban Drainage Systems Using Machine Learning Modelling. Environ. Model. Softw. 2023, 167, 105772. [Google Scholar] [CrossRef]
- Nalakurthi, N.V.S.R.; Abimbola, I.; Ahmed, T.; Anton, I.; Riaz, K.; Ibrahim, Q.; Banerjee, A.; Tiwari, A.; Gharbia, S. Challenges and Opportunities in Calibrating Low-Cost Environmental Sensors. Sensors 2023, 24, 3650. [Google Scholar] [CrossRef] [PubMed]
- Liu, P.; Jiang, Z.; Li, Y.; Lan, F.; Sun, Y. Landscape Pattern Changes Affect Runoff and Sediment Yield in the Nandong Underground River System in Southwest China. Sustainability 2023, 15, 835. [Google Scholar] [CrossRef]
- Khosravi, A.; Machado, L.; Nunes, R.O. Time-Series Prediction of Wind Speed Using Machine Learning Algorithms: A Case Study Osorio Wind Farm, Brazil. Appl. Energy 2018, 224, 550–566. [Google Scholar] [CrossRef]
- O’Neil, C. Weapons of Math Destruction: How Big Data Increases Inequality and Threatens Democracy; Crown: New York City, NY, USA, 2016; ISBN 9780553418811. [Google Scholar]
- Barocas, S.; Hardt, M.; Narayanan, A. Fairness and Machine Learning Limitations and Opportunities; The MIT Press: Cambridge, MA, USA, 2023; pp. 1–294. [Google Scholar]
- Smiley, K.T.; Noy, I.; Wehner, M.F.; Frame, D.; Sampson, C.C.; Wing, O.E.J. Social Inequalities in Climate Change-Attributed Impacts of Hurricane Harvey. Nat. Commun. 2022, 13, 3418. [Google Scholar] [CrossRef]
- Jobin, A.; Ienca, M.; Vayena, E. The Global Landscape of AI Ethics Guidelines. Nat. Mach. Intell. 2019, 1, 389–399. [Google Scholar] [CrossRef]
- Skoglund, A. Becoming Indigenous—Governing Imaginaries in the Anthropocene. Acad. Manag. Learn. Educ. 2020, 19, 425–428. [Google Scholar] [CrossRef]
- Rahwan, I.; Cebrian, M.; Obradovich, N.; Bongard, J.; Bonnefon, J.F.; Breazeal, C.; Crandall, J.W.; Christakis, N.A.; Couzin, I.D.; Jackson, M.O.; et al. Machine Behaviour. Nature 2019, 568, 477–486. [Google Scholar] [CrossRef]
- Floridi, L.; Cowls, J.; Beltrametti, M.; Chatila, R.; Chazerand, P.; Dignum, V.; Luetge, C.; Madelin, R.; Pagallo, U.; Rossi, F.; et al. AI4People—An Ethical Framework for a Good AI Society: Opportunities, Risks, Principles, and Recommendations. Minds Mach. 2018, 28, 689–707. [Google Scholar] [CrossRef]
- Mantelero, A. Beyond Data: Human Rights, Ethical and Social Impact Assessment in AI; Asser Press: The Hague, The Netherlands, 2023; ISBN 9789462655300. [Google Scholar]
- Hooshyar, D.; Yang, Y. Problems with SHAP and LIME in Interpretable AI for Education: A Comparative Study of Post-Hoc Explanations and Neural-Symbolic Rule Extraction. IEEE Access 2024, 12, 137472–137490. [Google Scholar] [CrossRef]
- Linardatos, P.; Papastefanopoulos, V.; Kotsiantis, S. Explainable Ai: A Review of Machine Learning Interpretability Methods. Entropy 2021, 23, 18. [Google Scholar] [CrossRef]
- Abdalla, R.; Agban, N.; Lüddeke, C.; Sui, D.; Jaeger, P. Multi Agent Physics Informed Reinforcement Learning for Waterflooding Optimization. Frankl. Open 2025, 10, 100229. [Google Scholar] [CrossRef]
- Thomas, D.S.G.; Twyman, C. Equity and Justice in Climate Change Adaptation amongst Natural-Resource-Dependent Societies. Glob. Environ. Change 2005, 15, 115–124. [Google Scholar] [CrossRef]
Traditional Approach | AI Approach | References |
---|---|---|
Manual data acquisition and data analysis | Real-time data acquisition (IoT) and efficient data analysis | [61] |
May lack inclusive decision-making | Intelligent decision-making | [62] |
Rely on historical data for hydrological modeling | Combines historical data, AI, remote sensing, and cloud computing for flood modeling | [18] |
Involves laborious, expensive, and time-consuming laboratory methods | Can handle massive amounts of data and uses remote sensing and the IoT for quality monitoring | [27,63] |
Lack of comprehensive data monitoring | Heavily depends on data and needs expertise | [11] |
Focus Area | Reference Numbers | Contribution Summary |
---|---|---|
Streamflow Prediction and Rainfall Runoff Modeling | [17,18,21,22,24,25,26,65] | Applied LSTM, STA-GRU, and CNN-LSTM models to improve streamflow forecasting in various climatic and topographic settings. |
Flood Forecasting and Early Warning Systems | [57,62,67,68,69,78,79] | Developed deep learning models like DCGAN, LSTM, and Transformer for flood prediction with enhanced lead time and accuracy. |
Water Quality Monitoring and Sediment Transport | [9,19,27,63,80] | Demonstrated AI applications in real-time water quality assessment and sediment concentration estimation using ANN and IoT data. |
AI in Dam and Reservoir Operation | [28,91,92,93,94,95] | Used Explainable AI (XAI), computer vision, and optimization algorithms to enhance dam safety, inflow prediction, and rule curve optimization. |
Smart Irrigation Systems | [30,31,96,97,98] | Showcased AI algorithms (SVM, KNN, fuzzy logic) for optimizing irrigation scheduling and improving water use efficiency. |
Urban Drainage and Stormwater Management | [32,100,101,102,104,105] | Implemented ML-integrated digital twins and real-time models for flood mitigation, drainage optimization, and smart waste management. |
Hybrid AI–Physics Models | [14,21,60,65] | Combined AI models with physical hydrologic models to improve realism and generalization in runoff and flood simulations. |
Ethics, Bias, and Fairness in AI Deployment | [52,53,116,117,119,120] | Explored algorithmic bias, fairness, and data representation issues in AI for water systems; discussed transparency and accountability. |
Institutional Readiness and Policy Integration | [86,87,88,89,90,110,115] | Identified implementation barriers such as lack of expertise, funding, and cybersecurity readiness in AI integration in water utilities. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gacu, J.G.; Monjardin, C.E.F.; Mangulabnan, R.G.T.; Pugat, G.C.E.; Solmerin, J.G. Artificial Intelligence (AI) in Surface Water Management: A Comprehensive Review of Methods, Applications, and Challenges. Water 2025, 17, 1707. https://doi.org/10.3390/w17111707
Gacu JG, Monjardin CEF, Mangulabnan RGT, Pugat GCE, Solmerin JG. Artificial Intelligence (AI) in Surface Water Management: A Comprehensive Review of Methods, Applications, and Challenges. Water. 2025; 17(11):1707. https://doi.org/10.3390/w17111707
Chicago/Turabian StyleGacu, Jerome G., Cris Edward F. Monjardin, Ronald Gabriel T. Mangulabnan, Gerald Christian E. Pugat, and Jerose G. Solmerin. 2025. "Artificial Intelligence (AI) in Surface Water Management: A Comprehensive Review of Methods, Applications, and Challenges" Water 17, no. 11: 1707. https://doi.org/10.3390/w17111707
APA StyleGacu, J. G., Monjardin, C. E. F., Mangulabnan, R. G. T., Pugat, G. C. E., & Solmerin, J. G. (2025). Artificial Intelligence (AI) in Surface Water Management: A Comprehensive Review of Methods, Applications, and Challenges. Water, 17(11), 1707. https://doi.org/10.3390/w17111707