A Numerical Simulation Study on the Spread of Mine Water Inrush in Complex Roadways
Abstract
1. Introduction
2. Numerical Method
2.1. Physical Model
2.2. Governing Equation
2.3. Distribution of Water Level Height Measuring Points
2.4. Research Methodology
3. Results and Discussion
3.1. Analysis of Water Spreading Process in Tunnel
3.2. The Variation in Water Level Height in the Tunnel
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Niu, C.; Tian, Q.; Xiao, L.; Xue, X.; Zhang, R.; Xu, D.; Luo, S. Principal causes of water damage in mining roofs under giant thick topsoil–lilou coal mine. Appl. Water Sci. 2024, 14, 146. [Google Scholar] [CrossRef]
- Qiang, W.; Bo, L.; Yulong, C. Vulnerability assessment of groundwater inrush from underlying aquifers based on variable weight model and its application. Water Resour. Manag. 2016, 30, 3331–3345. [Google Scholar] [CrossRef]
- Xu, Z.; Sun, Y. Mine water safety and environment: Chinese experience. Water 2024, 16, 2833. [Google Scholar] [CrossRef]
- Gu, H.; Shang, X.; Zhao, H. Theory and technology for the prevention of mine water disasters. Water 2024, 16, 2952. [Google Scholar] [CrossRef]
- Li, H.; Bai, H. Simulation research on the mechanism of water inrush from fractured floor under the dynamic load induced by roof caving: Taking the Xinji Second Coal Mine as an example. Arab. J. Geosci. 2019, 12, 466. [Google Scholar] [CrossRef]
- Cui, F.; Wu, Q.; Lin, Y.; Zeng, Y.; Zhang, K. Damage Features and Formation Mechanism of the Strong Water Inrush Disaster at the Daxing Co Mine, Guangdong Province, China. Mine Water Environ. 2018, 37, 346–350. [Google Scholar] [CrossRef]
- LaMoreaux, J.W.; Wu, Q.; Wanfang, Z. New development in theory and practice in mine water control in China. Carbonates Evaporites 2014, 29, 141–145. [Google Scholar] [CrossRef]
- Li, B.; Wu, Q. Catastrophic Evolution of Water Inrush from A Water-Rich Fault in Front of Roadway Development: A Case Study of The Hongcai Coal Mine. Mine Water Environ. 2019, 38, 421–430. [Google Scholar] [CrossRef]
- Zhang, X.; Lei, M.; Wang, S.; Zhang, X.; Chen, H.; Jiang, X. Risk Assessment and Mechanism of Water Inrush in Water-rich Deep-buried Karst Tunnel. Nat. Hazards Earth Syst. Sci. Discuss. 2024; preprint. [Google Scholar]
- Guo, J.; Zhao, H.; Ma, F.; Li, K.; Zhao, C. Investigating the permeability of fractured rock masses and the origin of water in a mine tunnel in Shandong Province, China. Water Sci. Technol. 2015, 72, 2006–2017. [Google Scholar] [CrossRef]
- Wu, Q.; Zhang, X.; Zhao, Y.; Li, P.; Yao, Y.; Du, Z.; Xu, H.; Wang, X. Numerical Simulation of Inrush Water Spreading Through a Mine: A Case Study of the Beixinyao Mine, Shanxi Province, China. Mine Water Environ. 2022, 41, 487–503. [Google Scholar] [CrossRef]
- Zhang, X.; Wu, Q.; Zhao, Y.; Liu, S.; Xu, H. Spatiotemporal modeling of water inrush spreading in mine roadway networks. Water Sci. Technol. 2022, 85, 872–886. [Google Scholar] [CrossRef] [PubMed]
- Qin, W.; Yicheng, Y.; Ying, J. Simulation on Mine Water-inrush Characteristics of Cross Roadway Based on CFX. Procedia Eng. 2011, 26, 759–764. [Google Scholar] [CrossRef]
- Li, C.; Li, J.; Li, Z.; Hou, D. Establishment of spatiotemporal dynamic model for water inrush spreading processes in underground mining operations. Saf. Sci. 2013, 55, 45–52. [Google Scholar] [CrossRef]
- Wu, Q.; Yao, Y.; Du, Y.; Li, H.; Zhao, Y.; Xu, H.; Liu, S.; Wang, X. Physical simulation test study on the stability of wading personnel inmine water inrush roadway. J. China Coal Soc. 2025, 50, 13–22. [Google Scholar]
- Hamilton, K.; Demant, D.; Peden, A.E.; Hagger, M.S. A systematic review of human behaviour in and around floodwater. Int. J. Disaster Risk Reduct. 2020, 47, 101561. [Google Scholar] [CrossRef]
- Wu, Q.; Du, Y.; Xu, H.; Zhao, Y.; Zhang, X.; Yao, Y. Finding the earliest arrival path through a time-varying network for evacuation planning of mine water inrush. Saf. Sci. 2020, 130, 104836. [Google Scholar] [CrossRef]
- Du, Y.; Wu, Q.; Zhao, Y.; Zhang, X.; Yao, Y.; Xu, H. A parallel time-varying earliest arrival path algorithm for evacuation planning of underground mine water inrush accidents. Concurr. Comput. Pr. Exp. 2020, 32, e5644. [Google Scholar] [CrossRef]
- Ma, X.W.; Xu, H.L. Dynamic planning of mine water avoidance path based on strategy. Min. Metall. 2023, 32, 12. [Google Scholar]
- Huang, Y. Research on the Improvement of Dijkstra Algorithm in the Shortest Path Calculation. In Proceedings of the 2017 4th International Conference on Machinery, Materials and Computer (MACMC 2017), Xi’an, China, 27–29 November 2017; Volume 141. [Google Scholar]
- Chen, J.; Li, F.; Lian, Z. The hydrogeology of mine water inrush period using Dijkstra’s algorithm. Arab. J. Geosci. 2020, 13, 825. [Google Scholar] [CrossRef]
- Zhao, X.; Wang, Q.; Xie, B.; Pan, S.; Ji, M. A dynamic rescue route planning method based on 3D network in mine water inrush hazard. Geomat. Nat. Hazards Risk 2019, 10, 2387–2407. [Google Scholar] [CrossRef]
- Hong, Y.; Li, D.; Wu, Q.; Xu, H. Priority-Oriented Route Network Planning for Evacuation in Constrained Space Scenarios. J. Optim. Theory Appl. 2019, 181, 279–297. [Google Scholar] [CrossRef]
- Yang, H.S.; Xu, H.; Ju, Z.W. Simulation and research on 3D tunnel pedestrian evacuation based on agent. Comput. Technol. Dev. 2019, 29, 132–137. [Google Scholar]
- Li, W.; Wang, Y.; Ye, Z.; Liu, Y.A.; Wang, L. Development of a mixed reality assisted escape system for underground mine- based on the mine water-inrush accident background. Tunn. Undergr. Space Technol. 2024, 143, 105471. [Google Scholar] [CrossRef]
- Ji, J.; Zhang, J.; Chen, J.; Wu, S. Computer simulation of evacuation in underground coal mines. Min. Sci. Technol. 2010, 20, 677–681. [Google Scholar] [CrossRef]
- Khatooni, K.; Hooshyaripor, F.; MalekMohammadi, B.; Noori, R. A new approach for urban flood risk assessment using coupled SWMM–HEC-RAS-2D model. J. Environ. Manag. 2025, 374, 123849. [Google Scholar] [CrossRef]
Measurement Points | Distance from Water Source (m) | Time to Reach Water Level at 0.5 m (s) |
---|---|---|
1 | 50 | 950 |
2 | 100 | 1555 |
3 | 175 | 3413 |
4 | 236 | 3586 |
5 | 296 | 3758 |
6 | 319 | 3672 |
7 | 330 | 3715 |
8 | 400 | 3586 |
9 | 387 | 14,213 |
10 | 463 | 5875 |
11 | 405 | 17,496 |
12 | 493 | 6005 |
13 | 567 | 17,885 |
14 | 750 | 13,651 |
15 | 844 | 13,478 |
16 | 913 | 16,200 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fan, D.; Li, S.; He, P.; Chen, S.; Zou, X.; Wu, Y. A Numerical Simulation Study on the Spread of Mine Water Inrush in Complex Roadways. Water 2025, 17, 1434. https://doi.org/10.3390/w17101434
Fan D, Li S, He P, Chen S, Zou X, Wu Y. A Numerical Simulation Study on the Spread of Mine Water Inrush in Complex Roadways. Water. 2025; 17(10):1434. https://doi.org/10.3390/w17101434
Chicago/Turabian StyleFan, Donglin, Shoubiao Li, Peidong He, Sushe Chen, Xin Zou, and Yang Wu. 2025. "A Numerical Simulation Study on the Spread of Mine Water Inrush in Complex Roadways" Water 17, no. 10: 1434. https://doi.org/10.3390/w17101434
APA StyleFan, D., Li, S., He, P., Chen, S., Zou, X., & Wu, Y. (2025). A Numerical Simulation Study on the Spread of Mine Water Inrush in Complex Roadways. Water, 17(10), 1434. https://doi.org/10.3390/w17101434