Advancing SDGs: Predicting Future Shifts in Saudi Arabia’s Terrestrial Water Storage Using Multi-Step-Ahead Machine Learning Based on GRACE Data
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Description and Proposed Method
2.2. Neural Network Models
2.3. Kernel Support Vector Regression (kSVR)
2.4. Ensemble Averaging Methods
2.5. Performance Criteria
3. Study Locations
4. Results
Results of AI-Based Models
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mukherjee, A.; Ramachandran, P. Prediction of GWL with the help of GRACE TWS for unevenly spaced time series data in India: Analysis of comparative performances of SVR, ANN and LRM. J. Hydrol. 2018, 558, 647–658. [Google Scholar] [CrossRef]
- Al-Qadami, E.H.H.; Mustaffa, Z.; Shah, S.M.H.; Matínez-Gomariz, E.; Yusof, K.W. Full-scale experimental investigations on the response of a flooded passenger vehicle under subcritical conditions. Nat. Hazards 2022, 110, 325–348. [Google Scholar] [CrossRef]
- Chen, Z.; Zheng, W.; Yin, W.; Li, X.; Zhang, G.; Zhang, J. Improving the Spatial Resolution of GRACE-Derived Terrestrial Water Storage Changes in Small Areas Using the Machine Learning Spatial Downscaling Method. Remote Sens. 2021, 13, 4760. [Google Scholar] [CrossRef]
- Ahmed, M.; Sultan, M.; Elbayoumi, T.; Tissot, P. Forecasting GRACE Data over the African Watersheds Using Artificial Neural Networks. Remote Sens. 2019, 11, 1769. [Google Scholar] [CrossRef]
- Sahour, H.; Sultan, M.; Vazifedan, M.; Abdelmohsen, K.; Karki, S.; Yellich, J.A.; Gebremichael, E.; Alshehri, F.; Elbayoumi, T.M. Statistical Applications to Downscale GRACE-Derived Terrestrial Water Storage Data and to Fill Temporal Gaps. Remote Sens. 2020, 12, 533. [Google Scholar] [CrossRef]
- Miro, M.E.; Famiglietti, J.S. Downscaling GRACE Remote Sensing Datasets to High-Resolution Groundwater Storage Change Maps of California’s Central Valley. Remote Sens. 2018, 10, 143. [Google Scholar] [CrossRef]
- Shah, S.M.H.; Mustaffa, Z.; Matínez-Gomariz, E.; Yusof, K.W. Hydrodynamic effect on non-stationary vehicles at varying Froude numbers under subcritical flows on flat roadways. J. Flood Risk Manag. 2020, 13, e12657. [Google Scholar] [CrossRef]
- Valipour, M.; Bateni, S.M.; Jun, C. Global Surface Temperature: A New Insight. Climate 2021, 9, 81. [Google Scholar] [CrossRef]
- Khan, A.A.; Zhao, Y.; Khan, J.; Rahman, G.; Rafiq, M.; Moazzam, M.F.U. Spatial and Temporal Analysis of Rainfall and Drought Condition in Southwest Xinjiang in Northwest China, Using Various Climate Indices. Earth Syst. Environ. 2021, 5, 201–216. [Google Scholar] [CrossRef]
- Mamun, O.; Wenzlick, M.; Sathanur, A.; Hawk, J.; Devanathan, R. Machine learning augmented predictive and generative model for rupture life in ferritic and austenitic steels. NPJ Mater. Degrad. 2021, 5, 20. [Google Scholar] [CrossRef]
- Chai, M.; Liu, P.; He, Y.; Han, Z.; Duan, Q.; Song, Y.; Zhang, Z. Machine learning-based approach for fatigue crack growth prediction using acoustic emission technique. Fatigue Fract. Eng. Mater. Struct. 2023, 46, 2784–2797. [Google Scholar] [CrossRef]
- Tan, Y.; Wang, X.; Kang, Z.; Ye, F.; Chen, Y.; Zhou, D.; Zhang, X.; Gong, J. Creep lifetime prediction of 9% Cr martensitic heat-resistant steel based on ensemble learning method. J. Mater. Res. Technol. 2022, 21, 4745–4760. [Google Scholar] [CrossRef]
- Nguyen, P.K.-T.; Chua, L.H.-C.; Talei, A.; Chai, Q.H. Water level forecasting using neuro-fuzzy models with local learning. Neural Comput. Appl. 2018, 30, 1877–1887. [Google Scholar] [CrossRef]
- Taylor, R.G.; Scanlon, B.; Döll, P.; Rodell, M.; Van Beek, R.; Wada, Y.; Longuevergne, L.; Leblanc, M.; Famiglietti, J.S.; Edmunds, M.; et al. Ground water and climate change. Nat. Clim. Chang. 2013, 3, 322–329. [Google Scholar] [CrossRef]
- Zhu, Y.; Liu, S.; Yi, Y.; Qi, M.; Li, W.; Saifullah, M.; Zhang, S.; Wu, K. Spatio-temporal variations in terrestrial water storage and its controlling factors in the Eastern Qinghai-Tibet Plateau. Hydrol. Res. 2021, 52, 323–338. [Google Scholar] [CrossRef]
- Tapley, B.D.; Bettadpur, S.; Watkins, M.; Reigber, C. The gravity recovery and climate experiment: Mission overview and early results. Geophys. Res. Lett. 2004, 31, L09607. [Google Scholar] [CrossRef]
- Tapley, B.D.; Bettadpur, S.; Ries, J.C.; Thompson, P.F.; Watkins, M.M. GRACE Measurements of Mass Variability in the Earth System. Science 2004, 305, 503–505. [Google Scholar] [CrossRef]
- Leblanc, M.J.; Tregoning, P.; Ramillien, G.; Tweed, S.O.; Fakes, A. Basin-scale, integrated observations of the early 21st century multiyear drought in southeast Australia. Water Resour. Res. 2009, 45, 1–10. [Google Scholar] [CrossRef]
- Yeh, P.J.; Swenson, S.C.; Famiglietti, J.S.; Rodell, M. Remote sensing of groundwater storage changes in Illinois using the Gravity Recovery and Climate Experiment (GRACE). Water Resour. Res. 2006, 42, 1–7. [Google Scholar] [CrossRef]
- Andrew, R.; Guan, H.; Batelaan, O. Estimation of GRACE water storage components by temporal decomposition. J. Hydrol. 2017, 552, 341–350. [Google Scholar] [CrossRef]
- Liu, D.; Mishra, A.K.; Yu, Z.; Lü, H.; Li, Y. Support vector machine and data assimilation framework for Groundwater Level Forecasting using GRACE satellite data. J. Hydrol. 2021, 603, 126929. [Google Scholar] [CrossRef]
- Mo, S.; Zhong, Y.; Forootan, E.; Mehrnegar, N.; Yin, X.; Wu, J.; Feng, W.; Shi, X. Bayesian convolutional neural networks for predicting the terrestrial water storage anomalies during GRACE and GRACE-FO gap. J. Hydrol. 2022, 604, 127244. [Google Scholar] [CrossRef]
- Sun, A.Y. Predicting groundwater level changes using GRACE data. Water Resour. Res. 2013, 49, 5900–5912. [Google Scholar] [CrossRef]
- Yozgatligil, C.; Aslan, S.; Iyigun, C.; Batmaz, I. Comparison of missing value imputation methods in time series: The case of Turkish meteorological data. Theor. Appl. Clim. 2013, 112, 143–167. [Google Scholar] [CrossRef]
- Tum, M.; Günther, K.P.; Böttcher, M.; Baret, F.; Bittner, M.; Brockmann, C.; Weiss, M. Global Gap-Free MERIS LAI Time Series (2002–2012). Remote Sens. 2016, 8, 69. [Google Scholar] [CrossRef]
- Bhagat, S.K.; Tung, T.M.; Yaseen, Z.M. Development of artificial intelligence for modeling wastewater heavy metal removal: State of the art, application assessment and possible future research. J. Clean. Prod. 2020, 250, 119473. [Google Scholar] [CrossRef]
- Rahman, A.S.; Hosono, T.; Quilty, J.M.; Das, J.; Basak, A. Multiscale groundwater level forecasting: Coupling new machine learning approaches with wavelet transforms. Adv. Water Resour. 2020, 141, 103595. [Google Scholar] [CrossRef]
- Elzain, H.E.; Chung, S.Y.; Venkatramanan, S.; Selvam, S.; Ahemd, H.A.; Seo, Y.K.; Bhuyan, S.; Yassin, M.A. Novel machine learning algorithms to predict the groundwater vulnerability index to nitrate pollution at two levels of modeling. Chemosphere 2023, 314, 137671. [Google Scholar] [CrossRef] [PubMed]
- Yassin, M.A.; Usman, A.; Abba, S.; Ozsahin, D.U.; Aljundi, I.H. Intelligent learning algorithms integrated with feature engineering for sustainable groundwater salinization modelling: Eastern Province of Saudi Arabia. Results Eng. 2023, 20, 101434. [Google Scholar] [CrossRef]
- Baalousha, H.M.; Younes, A.; Yassin, M.A.; Fahs, M. Comparison of the Fuzzy Analytic Hierarchy Process (F-AHP) and Fuzzy Logic for Flood Exposure Risk Assessment in Arid Regions. Hydrology 2023, 10, 136. [Google Scholar] [CrossRef]
- Chen, L.; He, Q.; Liu, K.; Li, J.; Jing, C. Downscaling of GRACE-Derived Groundwater Storage Based on the Random Forest Model. Remote Sens. 2019, 11, 2979. [Google Scholar] [CrossRef]
- Gyawali, B.; Ahmed, M.; Murgulet, D.; Wiese, D. Filling Temporal Gaps within and between GRACE and GRACE-FO Records: Advances, Challenges, and Future Opportunities. Earth Sci. Rev. 2021. in review. [Google Scholar]
- Seyoum, W.M.; Milewski, A.M. Improved methods for estimating local terrestrial water dynamics from GRACE in the Northern High Plains. Adv. Water Resour. 2017, 110, 279–290. [Google Scholar] [CrossRef]
- Maier, H.R.; Dandy, G.C. Determining Inputs for Neural Network Models of Multivariate Time Series. Comput. Civ. Infrastruct. Eng. 1997, 12, 353–368. [Google Scholar] [CrossRef]
- Raza, M.Q.; Khosravi, A. A review on artificial intelligence based load demand forecasting techniques for smart grid and buildings. Renew. Sustain. Energy Rev. 2015, 50, 1352–1372. [Google Scholar] [CrossRef]
- Ren, G.; Cao, Y.; Wen, S.; Huang, T.; Zeng, Z. A modified Elman neural network with a new learning rate scheme. Neurocomputing 2018, 286, 11–18. [Google Scholar] [CrossRef]
- Khaki, M.; Yusoff, I.; Islami, N.; Hussin, N.H. Artificial neural network technique for modeling of groundwater level in Langat Basin, Malaysia. Sains Malays 2016, 45, 19–28. [Google Scholar]
- Jia, W.; Zhao, D.; Zheng, Y.; Hou, S. A novel optimized GA–Elman neural network algorithm. Neural Comput. Appl. 2019, 31, 449–459. [Google Scholar] [CrossRef]
- Chandar, S.K. Grey Wolf optimization-Elman neural network model for stock price prediction. Soft Comput. 2021, 25, 649–658. [Google Scholar] [CrossRef]
- Li, M.; Zhou, W.; Liu, J.; Zhang, X.; Pan, F.; Yang, H.; Li, M.; Luo, D. Vehicle Interior Noise Prediction Based on Elman Neural Network. Appl. Sci. 2021, 11, 8029. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, W.; Li, Y.; Wang, J.; Dang, Z. Forecasting wind speed using empirical mode decomposition and Elman neural network. Appl. Soft Comput. 2014, 23, 452–459. [Google Scholar] [CrossRef]
- Jamei, M.; Karbasi, M.; Alawi, O.A.; Kamar, H.M.; Khedher, K.M.; Abba, S.; Yaseen, Z.M. Earth skin temperature long-term prediction using novel extended Kalman filter integrated with Artificial Intelligence models and information gain feature selection. Sustain. Comput. Informatics Syst. 2022, 35, 100721. [Google Scholar] [CrossRef]
- Meshram, S.G.; Ghorbani, M.A.; Shamshirband, S.; Karimi, V.; Meshram, C. River flow prediction using hybrid PSOGSA algorithm based on feed-forward neural network. Soft Comput. 2019, 23, 10429–10438. [Google Scholar] [CrossRef]
- Nguyen, T.-A.; Ly, H.-B.; Mai, H.-V.T.; Tran, V.Q. Prediction of Later-Age Concrete Compressive Strength Using Feedforward Neural Network. Adv. Mater. Sci. Eng. 2020, 2020, 9682740. [Google Scholar] [CrossRef]
- Vapnik, V. The Support Vector Method of Function Estimation. In Nonlinear Modeling; Springer: Boston, MA, USA, 1998; pp. 55–85. [Google Scholar] [CrossRef]
- Abdullahi, J.; Rotimi, A.; Malami, S.I.; Jibrin, H.B.; Tahsin, A.; Abba, S. Feasibility of Artificial Intelligence and CROPWAT Models in the Estimation of Uncertain Combined Variable Using Nonlinear Sensitivity Analysis. In Proceedings of the 2021 1st International Conference on Multidisciplinary Engineering and Applied Science (ICMEAS), Abuja, Nigeria, 15–16 July 2021; pp. 1–7. [Google Scholar]
- Huang, G.; Zhu, Q.; Siew, C. Extreme learning machine: Theory and applications. Neurocomputing 2006, 70, 489–501. [Google Scholar] [CrossRef]
- Alsharksi, A.N.; Danmaraya, Y.A.; Abdullahi, H.U.; Ghali, U.M.; Usman, A.G. Potential of Hybrid Adaptive Neuro Fuzzy Model in Simulating Clostridium Difficile Infection Status. Int. J. Basic Sci. Appl. Comput. 2020, 3, 1–6. [Google Scholar] [CrossRef]
- Zhang, X.; Akber, M.Z.; Zheng, W. Prediction of seven-day compressive strength of field concrete. Constr. Build. Mater. 2021, 305, 124604. [Google Scholar] [CrossRef]
- Azimi-Pour, M.; Eskandari-Naddaf, H.; Pakzad, A. Linear and non-linear SVM prediction for fresh properties and compressive strength of high volume fly ash self-compacting concrete. Constr. Build. Mater. 2020, 230, 117021. [Google Scholar] [CrossRef]
- Kazienko, P.; Lughofer, E.; Trawiński, B. Hybrid and ensemble methods in machine learning J.UCS special issue. J. Univers. Comput. Sci. 2013, 19, 457–461. [Google Scholar]
- Zhang, G.; Patuwo, B.E.; Hu, M.Y. Forecasting with artificial neural networks: The state of the art. Int. J. Forecast. 1998, 14, 35–62. [Google Scholar] [CrossRef]
- LeGates, D.R.; McCabe, G.J., Jr. Evaluating the use of “goodness-of-fit” Measures in hydrologic and hydroclimatic model validation. Water Resour. Res. 1999, 35, 233–241. [Google Scholar] [CrossRef]
- Ehteram, M.; Sammen, S.S.; Panahi, F.; Sidek, L.M. A hybrid novel SVM model for predicting CO2 emissions using Multiobjective Seagull Optimization. Environ. Sci. Pollut. Res. 2021, 28, 66171–66192. [Google Scholar] [CrossRef]
- Pham, Q.B.; Sammen, S.S.; Abba, S.I.; Mohammadi, B.; Shahid, S.; Abdulkadir, R.A. A new hybrid model based on relevance vector machine with flower pollination algorithm for phycocyanin pigment concentration estimation. Environ. Sci. Pollut. Res. 2021, 28, 32564–32579. [Google Scholar] [CrossRef] [PubMed]
- Sihag, P.; Kumar, M.; Sammen, S.S. Predicting the infiltration characteristics for semi-arid regions using regression trees. Water Supply 2021, 21, 2583–2595. [Google Scholar] [CrossRef]
- Döll, P.; Schmied, H.M.; Schuh, C.; Portmann, F.T.; Eicker, A. Global-scale assessment of groundwater depletion and related groundwater abstractions: Combining hydrological modeling with information from well observations and GRACE satellites. Water Resour. Res. 2014, 50, 5698–5720. [Google Scholar] [CrossRef]
- Sultan, M.; Ahmed, M.; Wahr, J.; Yan, E.; Emil, M.K. Monitoring aquifer depletion from space: Case studies from the Saharan and Arabian aquifers. Remote Sens. Terr. Water Cycle 2014, 206, 349. [Google Scholar]
- Wagner, W. Groundwater in the Arab Middle East, 1st ed.; Springer: Berlin/Heidelberg, Germany, 2011. [Google Scholar] [CrossRef]
- Awadh, S.M.; Al-Mimar, H.; Yaseen, Z.M. Groundwater availability and water demand sustainability over the upper mega aquifers of Arabian Peninsula and west region of Iraq. Environ. Dev. Sustain. 2021, 23, 1–21. [Google Scholar] [CrossRef]
- Chowdhury, S.; Al-Zahrani, M. Characterizing water resources and trends of sector wise water consumptions in Saudi Arabia. J. King Saud Univ.-Eng. Sci. 2015, 27, 68–82. [Google Scholar] [CrossRef]
- Pagano, A.; Amato, F.; Ippolito, M.; De Caro, D.; Croce, D.; Motisi, A.; Provenzano, G.; Tinnirello, I. Machine learning models to predict daily actual evapotranspiration of citrus orchards under regulated deficit irrigation. Ecol. Inform. 2023, 76, 102133. [Google Scholar] [CrossRef]
- Malik, A.; Tikhamarine, Y.; Sammen, S.S.; Abba, S.I.; Shahid, S. Prediction of meteorological drought by using hybrid support vector regression optimized with HHO versus PSO algorithms. Environ. Sci. Pollut. Res. 2021, 28, 39139–39158. [Google Scholar] [CrossRef]
- Adhikari, R.; Bijari, M.; Zhang, G.P. Time Series Forecasting Using a Hybrid ARIMA and Neural Network Model. Neurocomputing 2003, 50, 159–175. [Google Scholar]
- Al-Sulttani, A.O.; Al-Mukhtar, M.; Roomi, A.B.; Farooque, A.A.; Khedher, K.M.; Yaseen, Z.M. Proposition of New Ensemble Data-Intelligence Models for Surface Water Quality Prediction. IEEE Access 2021, 9, 108527–108541. [Google Scholar] [CrossRef]
Input Variables | t-12 | t-24 | t-36 | t-48 |
---|---|---|---|---|
Mean | −2.8277 | −3.3221 | −3.8622 | −4.4879 |
Median | −2.3357 | −2.7804 | −3.344 | −3.934 |
Standard Deviation | 2.32164 | 2.43283 | 2.59588 | 2.93531 |
Kurtosis | 1.09337 | 0.37475 | 0.78005 | 4.14015 |
Skewness | −1.0135 | −0.8047 | −0.7754 | −1.2513 |
Minimum | −14.028 | −14.028 | −20.36 | −28.278 |
Maximum | 4.565 | 4.565 | 4.565 | 4.565 |
Models | Calibration Phase | Verification Phase | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
NS | CC | PBIAS | MAE | RMSE | MAPE | NS | CC | PBIAS | MAE | RMSE | MAPE | |
SVR-M1 | 0.9993 | 0.9997 | -0.0204 | 0.0346 | 0.0432 | 15.5646 | 0.9996 | 0.9998 | −0.0041 | 0.0349 | 0.0467 | 2.3691 |
SVR-M2 | 0.5948 | 0.7712 | −0.1481 | 0.7044 | 0.9852 | 266.5284 | 0.4464 | 0.6681 | 0.2167 | 1.0591 | 1.4949 | 45.9196 |
SVR-M3 | 0.5949 | 0.7713 | −0.1447 | 0.7024 | 0.9825 | 264.8380 | 0.4422 | 0.6650 | 0.2207 | 1.0635 | 1.5012 | 45.9486 |
ENN-M1 | 0.6187 | 0.7866 | −0.1423 | 0.7351 | 1.0070 | 231.6849 | 0.4270 | 0.6535 | 0.1844 | 1.1017 | 1.5188 | 52.0277 |
ENN-M2 | 0.6479 | 0.8049 | −0.1350 | 0.7142 | 0.9757 | 229.2472 | 0.5162 | 0.7185 | 0.1907 | 1.0309 | 1.4410 | 44.3684 |
ENN-M3 | 0.6586 | 0.8115 | −0.1259 | 0.6895 | 0.9553 | 220.4828 | 0.5981 | 0.7733 | 0.1563 | 0.9808 | 1.3293 | 50.2385 |
BPNN-M1 | 0.6211 | 0.7881 | −0.1436 | 0.7363 | 1.0067 | 234.0345 | 0.4355 | 0.6599 | 0.1832 | 1.1002 | 1.5080 | 52.2315 |
BPNN-M2 | 0.6419 | 0.8012 | −0.1482 | 0.7179 | 0.9925 | 247.1350 | 0.5205 | 0.7215 | 0.1813 | 1.0239 | 1.4281 | 45.8221 |
BPNN-M3 | 0.6525 | 0.8078 | −0.1224 | 0.6970 | 0.9557 | 220.8120 | 0.5942 | 0.7709 | 0.1694 | 0.9977 | 1.3473 | 50.0556 |
Calibration Phase | Verification Phase | |||||
---|---|---|---|---|---|---|
PBIAS | MAE | RMSE | PBIAS | MAE | RMSE | |
SA-k-SVR | −0.1081 | 0.4772 | 0.6675 | 0.1341 | 0.7143 | 1.0088 |
SA-ENN | −0.1345 | 0.7018 | 0.9624 | 0.1770 | 1.0152 | 1.3925 |
SA-BPNN | −0.1382 | 0.7080 | 0.9717 | 0.1779 | 1.0161 | 1.3922 |
WA-k-SVR | 0.2223 | 0.6142 | 0.8333 | 0.5543 | 1.3827 | 1.7708 |
WA-ENN | 0.3488 | 0.7890 | 1.0686 | 0.8340 | 1.7672 | 2.2519 |
WA-BPNN | 0.3496 | 0.7947 | 1.0740 | 0.8448 | 1.7791 | 2.2616 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yassin, M.A.; Abba, S.I.; Pradipta, A.; Makkawi, M.H.; Shah, S.M.H.; Usman, J.; Lawal, D.U.; Aljundi, I.H.; Ahsan, A.; Sammen, S.S. Advancing SDGs: Predicting Future Shifts in Saudi Arabia’s Terrestrial Water Storage Using Multi-Step-Ahead Machine Learning Based on GRACE Data. Water 2024, 16, 246. https://doi.org/10.3390/w16020246
Yassin MA, Abba SI, Pradipta A, Makkawi MH, Shah SMH, Usman J, Lawal DU, Aljundi IH, Ahsan A, Sammen SS. Advancing SDGs: Predicting Future Shifts in Saudi Arabia’s Terrestrial Water Storage Using Multi-Step-Ahead Machine Learning Based on GRACE Data. Water. 2024; 16(2):246. https://doi.org/10.3390/w16020246
Chicago/Turabian StyleYassin, Mohamed A., Sani I. Abba, Arya Pradipta, Mohammad H. Makkawi, Syed Muzzamil Hussain Shah, Jamilu Usman, Dahiru U. Lawal, Isam H. Aljundi, Amimul Ahsan, and Saad Sh. Sammen. 2024. "Advancing SDGs: Predicting Future Shifts in Saudi Arabia’s Terrestrial Water Storage Using Multi-Step-Ahead Machine Learning Based on GRACE Data" Water 16, no. 2: 246. https://doi.org/10.3390/w16020246
APA StyleYassin, M. A., Abba, S. I., Pradipta, A., Makkawi, M. H., Shah, S. M. H., Usman, J., Lawal, D. U., Aljundi, I. H., Ahsan, A., & Sammen, S. S. (2024). Advancing SDGs: Predicting Future Shifts in Saudi Arabia’s Terrestrial Water Storage Using Multi-Step-Ahead Machine Learning Based on GRACE Data. Water, 16(2), 246. https://doi.org/10.3390/w16020246