Achieving Responsible Reclaimed Water Reuse for Vineyard Irrigation: Lessons from Napa Valley, California and Valle de Guadalupe, Baja California
Abstract
:1. Introduction
2. Case Study Backgrounds
2.1. Napa Valley, California, USA
2.2. Valle De Guadalupe, Baja California, Mexico
3. Key Issues of Wastewater Reuse for Vineyard Irrigation
3.1. Source Water Supply
3.2. Source Water Quality
3.3. Polishing Treatment
3.4. Long-Term Irrigation Studies
3.5. Social Constraints
3.6. Economic Constraints
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Medellín-Azuara, J.; Mendoza-Espinosa, L.; Lund, J.R.; Waller-Barrera, C.; Howitt, R.E. Water Supply for Baja California: Economic-Engineering Analysis for Agricultural, Environmental and Urban Demands; Technical Report Prepared for the Border Affairs Unit of the California Environmental Protection Agency; University of California, Davis: Davis, CA, USA; Universidad Autónoma de Baja California: Ensenada, Baja California, Mexico, 2009; Available online: https://www.researchgate.net/publication/275022263_Water_Supply_for_Baja_California_Economic-_Engineering_Analysis_for_Agricultural_Environmental_and_Urban_Demands (accessed on 24 February 2024).
- Olivieri, A.W.; Pecson, B.; Crook, J.; Hultquist, R. California water reuse—Past, present and future perspectives. In Advances in Chemical Pollution, Environmental Management and Protection; Elsevier: Amsterdam, The Netherlands, 2020; Volume 5, pp. 65–111. [Google Scholar]
- Alston, J.M.; Lapsley, J.T.; Sambucci, O. Grape and Wine Production in California. In California Agriculture: Dimensions and Issues; Martin, P., Goodhue, R., Wright, B., Eds.; Giannini Foundation: Berkeley, CA, USA, 2020. [Google Scholar]
- Covarrubias, J.; Thach, L. Wines of Baja Mexico: A qualitative study examining viticulture, enology, and marketing practices. Wine Econ. Policy 2015, 2, 110–115. [Google Scholar] [CrossRef]
- Buelow, M.C.; Steenwerth, K.; Silva, L.C.; Parikh, S.J. Characterization of winery wastewater for reuse in California. Am. J. Enol. Vitic. 2015, 66, 302–310. [Google Scholar] [CrossRef]
- Hirzel, D.R.; Steenwerth, K.; Parikh, S.J.; Oberholster, A. Impact of winery wastewater irrigation on soil, grape and wine composition. Agric. Water Manag. 2017, 180, 178–189. [Google Scholar] [CrossRef]
- Verhoest, P.; Gaume, B.; Bauwens, J.; te Braak, P.; Huysmans, M. Public acceptance of recycled water: A survey of social attitudes toward the consumption of crops grown with treated wastewater. Sustain. Prod. Consum. 2022, 34, 467–475. [Google Scholar] [CrossRef]
- Mendoza-Espinosa, L.G.; Acosta-Zamorano, D.; Calderón de la Barca, N.; Cabello-Pasini, A. Public acceptance of the use of reclaimed water for the irrigation of vineyards: A case study in Guadalupe Valley, Mexico. In Water Resources Management VIII Chapter: Public Acceptance of the Use of Reclaimed Water for the Irrigation of Vineyards: A Case Study in Guadalupe Valley, Mexico; WIT Press: Ashurst Lodge, UK, 2015. [Google Scholar] [CrossRef]
- Chen, W.; Lu, S.; Jiao, W.; Wang, M.; and Chang, A. Reclaimed water: A safe irrigation water source? Environ. Dev. 2013, 8, 74–83. [Google Scholar] [CrossRef]
- Daesslé, L.W.; Andrade-Tafoya, P.D.; Lafarga-Moreno, J.; Mahlknecht, J.; Van Geldern, R.; Beramendi-Orosco, L.E.; Barth, J.A.C. Groundwater recharge sites and pollution sources in the wine-producing Guadalupe Valley (Mexico): Restrictions and mixing prior to transfer of reclaimed water from the US-México border. Sci. Total Environ. 2020, 713, 136715. [Google Scholar] [CrossRef]
- Hazen, C. Wastewater Treatment Plant Master Plan. Report to the Napa Sanitation District, 27 October 2022. Available online: https://www.napasan.com/177/Wastewater-Treatment-Plant (accessed on 24 February 2024).
- California State Water Resources Control Board (CSWRCB). Available online: www.waterboards.ca.gov/drinking_water/certlic/drinkingwater/documents/lawbook/RWregulations_20181001.pdf (accessed on 24 February 2024).
- Weber, E.; Grattan, S.; Hanson, B.; Vivaldi, G.; Meyer, R.; Prichard, T.; Schwankl, L. Recycled water causes no salinity or toxicity issues in Napa vineyards. Calif. Agric. 2014, 68, 59–67. [Google Scholar] [CrossRef]
- Napa Sanitation District (NSD). Available online: www.napasan.com/Document5Center/View/1222/Recycled-Water-Annual-Report-2022?bidId= (accessed on 24 February 2024).
- Chappelle, C.; McCann, H.; Jassby, D.; Schwabe, K.; Szeptycki, L. Managing Wastewater in a Changing Climate; Public Policy Institute of California: San Francisco, CA, USA, 2019. [Google Scholar]
- Gonzalez-Andrade, S. The economic value chain of wine in Baja California, México. Cadena de valor económico del vino en Baja California, México. Estud. Front. Nueva Época 2015, 16, 97–116. [Google Scholar]
- Consejo Mexicano Vitivinícola. Comité Nacional del Sistema Producto Vid. Plan Rector 2018. Available online: https://uvayvino.org.mx/html/docs/plan_rector_2018.pdf (accessed on 24 February 2024).
- CONAGUA. Actualización de la Disponibilidad Media Anual de Agua en el Acuífero Guadalupe (0207). Estado de Baja California. Available online: https://www.gob.mx/cms/uploads/attachment/file/103407/DR_0207.pdf (accessed on 24 February 2024).
- Waller-Barrera, C.; Mendoza-Espinosa, L.G.; Medellín-Azuara, J.; Lund, J.R. Optimización económico-ingenieril del suministro agrícola y urbano: Una aplicación de reuso del agua en Ensenada, Baja California México. Tecnol. Cienc. Agua 2009, 24, 87–103. [Google Scholar]
- Secretaría de Medio Ambiente y Recursos Naturales (SEMARNAT). Norma Oficial Mexicana NOM-003-SEMARNAT-1997, Que establece los límites máximos permisibles de contaminantes para las aguas residuales tratadas que se reusen en servicios al público. Diario Oficial. 21 September 1998. Available online: http://www.ordenjuridico.gob.mx/Documentos/Federal/wo69207.pdf (accessed on 10 March 2024).
- Mendoza-Espinosa, L.G.; Cabello-Pasini, A.; Macias-Carranza, V.; Daessle-Heuser, W.; Orozco-Borbon, M.V.; Quintanilla-Montoya, A.L. The effect of reclaimed wastewater on the quality and growth of grapevines. Water Sci. Technol. 2008, 57, 1445–1450. [Google Scholar] [CrossRef]
- Acosta-Zamorano, D.; Macías-Carranza, V.; Mendoza-Espinosa, L.; Cabello-Pasini, A. Effect of treated wastewater on growth, photosynthesis and yield of Tempranillo grapevines (Vitis vinífera) in Baja California, Mexico. Agrociencia 2013, 47, 753–766. [Google Scholar]
- Acosta-Zamorano, D.; Macías-Carranza, V.; Mendoza-Espinosa, L.; Cabello-Pasini, A. Effect of treated wastewater in the chemical composition of Tempranillo grapevines (Vitis vinífera) in Baja California, Mexico. Agrociencia 2013, 47, 767–779. [Google Scholar]
- Comisión Estatal de Servicios Públicos de Tijuana (CESPT). Plan Integral de Saneamiento y Reúso del Agua en Tijuana y Playas de Rosarito, en el Estado de Baja California. PTAR-CESPT-2017-001-SROP LP. Available online: https://www.cespt.gob.mx/Documentos/Transparencia/Art_81/81_41/41_03_2018_ResumenEstudioSaneamiento.pdf (accessed on 24 February 2024).
- Mendoza-Espinosa, L.G.; Burgess, J.E.; Daesslé, L.; Villada-Canela, M. Reclaimed water for the irrigation of vineyards: Mexico and South Africa as case studies. Sustain. Cities Soc. 2019, 51, 101769. [Google Scholar] [CrossRef]
- USEPA. Sustainable Water Infrastructure—USMCA Tijuana River Watershed and Adjacent Coastal Transboundary Wastewater Flows. Available online: https://www.epa.gov/sustainable-water-infrastructure/usmca-tijuana-river-watershed (accessed on 24 February 2024).
- Mroczko, O.; Preisendanz, H.E.; Wilson, C.; Mashtare, M.L.; Elliott, H.A.; Veith, T.L.; Soder, K.J.; Watson, J.E. Spatiotemporal patterns of PFAS in water and crop tissue at a beneficial wastewater reuse site in central Pennsylvania. J. Environ. Qual. 2022, 51, 1282–1297. [Google Scholar] [CrossRef] [PubMed]
- American Society of Microbiology, “Wastewater as a Key Driver of AMR”. Available online: https://asm.org/magazine/2023/fall/wastewater-as-a-key-driver-of-amr (accessed on 18 September 2024).
- Gatica, J.; Cytryn, E. Impact of treated wastewater irrigation on antibiotic resistance in the soil microbiome. Environ. Sci. Pollut. Res. 2013, 20, 3529–3538. [Google Scholar] [CrossRef]
- Christou, A.; Agüera, A.; Bayona, J.M.; Cytryn, E.; Fotopoulos, V.; Lambropoulou, D.; Manaia, C.M.; Michael, C.; Revitt, M.; Schröder, P.; et al. The potential implications of reclaimed wastewater reuse for irrigation on the agricultural environment: The knowns and unknowns of the fate of antibiotics and antibiotic resistant bacteria and resistance genes—A review. Water Res. 2017, 123, 448–467. [Google Scholar] [CrossRef]
- Ayache, C.; Poussade, Y.; Jaeger, Y.; Soyeux, E. Water reuse for vine irrigation: From research to full-scale implementation. Water Reuse 2023, 13, 295–304. [Google Scholar] [CrossRef]
- Beutel, M.W.; Newton, C.D.; Brouillard, E.S.; Watts, R.J. Nitrate removal in surface-flow constructed wetlands treating dilute agricultural runoff in the lower Yakima Basin, Washington. Ecol. Eng. 2009, 35, 1538–1546. [Google Scholar] [CrossRef]
- Beutel, M.W. Water quality in a surface-flow constructed treatment wetland polishing tertiary effluent from a municipal wastewater treatment plant. Water Sci. Technol. 2012, 66, 1977–1983. [Google Scholar] [CrossRef]
- Jasper, J.T.; Jones, Z.L.; Sharp, J.O.; Sedlak, D.L. Biotransformation of trace organic contaminants in open-water unit process treatment wetlands. Environ. Sci. Technol. 2014, 48, 5136–5144. [Google Scholar] [CrossRef]
- Levintal, E.; Kniffin, M.L.; Ganot, Y.; Marwaha, N.; Murphy, N.P.; Dahlke, H.E. Agricultural managed aquifer recharge (Ag-MAR)—A method for sustainable groundwater management: A review. Crit. Rev. Environ. Sci. Technol. 2023, 53, 291–314. [Google Scholar] [CrossRef]
- O’Geen, A.; Saal, M.; Dahlke, H.; Doll, D.; Elkins, R.; Fulton, A.; Fogg, G.; Harter, T.; Hopmans, J.; Ingels, C.; et al. Soil suitability index identifies potential areas for groundwater banking on agricultural lands. Calif. Agric. 2015, 69, 75–84. [Google Scholar] [CrossRef]
- Dery, J.L.; Rock, C.M.; Goldstein, R.R.; Onumajuru, C.; Brassill, N.; Zozaya, S.; Suri, M.R. Understanding grower perceptions and attitudes on the use of nontraditional water sources, including reclaimed or recycled water, in the semi-arid Southwest United States. Environ. Res. 2019, 170, 500–509. [Google Scholar] [CrossRef] [PubMed]
- Los Angeles Times. Tourists are Flooding Mexico’s Wine Country. They’re also Destroying It. By Cindy Carcamo. Available online: https://www.latimes.com/food/story/2023-11-28/baja-wine-valle-de-guadalupe-tourism-boom-water (accessed on 24 February 2024).
- Medellín-Azuara, J.; Mendoza-Espinosa, L.G.; Lund, J.R.; Ramírez-Acosta, R.J. The application of economic-engineering optimisation for water management in Ensenada, Baja California, Mexico. Water Sci. Technol. 2007, 55, 339–347. [Google Scholar] [CrossRef] [PubMed]
- Gilabert-Alarcón, C.; Salgado-Méndez, S.O.; Daesslé, L.W.; Mendoza-Espinosa, L.G.; Villada-Canela, M. Regulatory challenges for the use of reclaimed water in Mexico: A case study in Baja California. Water 2018, 10, 1432. [Google Scholar] [CrossRef]
- Canaj, K.; Morrone, D.; Roma, R.; Boari, F.; Cantore, V.; Todorovic, M. Reclaimed water for vineyard irrigation in a mediterranean context: Life cycle environmental impacts, life cycle costs, and eco-efficiency. Water 2021, 13, 2242. [Google Scholar] [CrossRef]
- Livia, S.; María, M.S.; Marco, B.; Marco, R. Assessment of wastewater reuse potential for irrigation in rural semi-arid areas: The case study of Punitaqui, Chile. Clean Technol. Environ. Policy 2020, 22, 1325–1338. [Google Scholar] [CrossRef]
- Bixio, D.; Thoeye, C.; De Koning, J.; Joksimovic, D.; Savic, D.; Wintgens, T.; Melin, T. Wastewater reuse in Europe. Desalination 2006, 187, 89–101. [Google Scholar] [CrossRef]
- Mannina, G.; Gulhan, H.; Ni, B.J. Water reuse from wastewater treatment: The transition towards circular economy in the water sector. Bioresour. Technol. 2022, 363, 127951. [Google Scholar] [CrossRef]
- Edirisooriya, E.M.N.T.; Wang, H.; Banerjee, S.; Longley, K.; Wright, W.; Mizuno, W.; Xu, P. Economic feasibility of developing alternative water supplies for agricultural irrigation. Curr. Opin. Chem. Eng. 2024, 43, 100987. [Google Scholar] [CrossRef]
- Asano, T.; Cotruvo, J.A. Groundwater recharge with reclaimed municipal wastewater: Health and regulatory considerations. Water Res. 2004, 38, 1941–1951. [Google Scholar] [CrossRef] [PubMed]
Source Water Supply | |
Treatment level | Treatment of wastewater for removal of organics and disinfection required |
Location | Proximity of wastewater treatment plant to vineyard |
Water quality | Salinity levels and seasonality of salinity |
Supply alternative | Reclaimed water vs surface water vs groundwater; different levels of nutrient ratios and salinity |
Polishing Treatment | |
Filtration | Filtration and disinfection of treated wastewater before irrigation |
Natural treatment systems | Use of constructed treatment wetlands for excess nitrogen removal and transformation of emerging contaminants |
Source Water Quality | |
Microbiological contaminants | Moderately low levels of microbial contaminants acceptable for use of reclaimed water for vineyard irrigation; Mexico crop irrigation criteria: fecal coliform below 1000 MPN/100 mL; California Title 22 criteria: total coliform below 240 MPN/100 mL |
Chloride toxicity | Depends on irrigation method, leaching fraction, and plant varieties; typically want chloride < 250–1000 mg/L for drip irrigation |
Boron toxicity | Grapes are particularly sensitive to boron; guidelines for boron tolerance are limited, but general boron target is <1 mg/L |
Sodium toxicity | Excessive sodium leads to nutritional imbalances and poor soil quality; presence of calcium and magnesium mitigates negative impacts |
Excess nitrogen | While some nitrogen can enhance growth, too much can lead to vigorous vine growth, reduced fruit yield, and increased risk of vine disease |
Heavy metals | Some sensitivity to heavy metals including arsenic, cadmium, chromium, copper, molybdenum, and selenium |
Emerging contaminants | Growing concern related to plant tissue uptake of some persistent organic contaminants, such as polyfluoroalkyl substances or “PFAS” |
Long-Term Irrigation Studies | |
Soil quality | Focus on root zone soil salinity and effects on grape yield, heavy metal levels in soil, and reclaimed water quality that can impede soil quality |
Plant growth | Focus on grape plant growth and yield |
Grape and wine quality | Focus on total acidity, volatile acidity, and alcohol and sugar content of wine and grapes; assess presence and uptake of persistent organic contaminants |
Ground water impacts | Assess impacts of reclaimed water reuse on groundwater quality including microbial contaminants, salinity, and nitrate |
Social Constraints | |
Social acceptance | Public in favor of using reclaimed water for wine production; grape growers will consider using reclaimed water if treated and distributed by trustworthy entity; small fraction of growers reject the idea |
Irrigator association | Association of vineyard water users to advocate for reclaimed water use and purchase and distribute reclaimed water to wine growers |
Economic Constraints | |
Water cost | Cost of reclaimed water compared with traditional water supplies |
Government financing | Support of economically important vineyards in water-limited regions by partly subsidizing upfront costs of reclaimed water systems |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Beutel, M.; Mendoza-Espinosa, L.; Medina, C.; Morandé, J.A.; Harmon, T.C.; Medellín-Azuara, J. Achieving Responsible Reclaimed Water Reuse for Vineyard Irrigation: Lessons from Napa Valley, California and Valle de Guadalupe, Baja California. Water 2024, 16, 2817. https://doi.org/10.3390/w16192817
Beutel M, Mendoza-Espinosa L, Medina C, Morandé JA, Harmon TC, Medellín-Azuara J. Achieving Responsible Reclaimed Water Reuse for Vineyard Irrigation: Lessons from Napa Valley, California and Valle de Guadalupe, Baja California. Water. 2024; 16(19):2817. https://doi.org/10.3390/w16192817
Chicago/Turabian StyleBeutel, Marc, Leopoldo Mendoza-Espinosa, Clara Medina, Jorge Andrés Morandé, Thomas C. Harmon, and Josué Medellín-Azuara. 2024. "Achieving Responsible Reclaimed Water Reuse for Vineyard Irrigation: Lessons from Napa Valley, California and Valle de Guadalupe, Baja California" Water 16, no. 19: 2817. https://doi.org/10.3390/w16192817
APA StyleBeutel, M., Mendoza-Espinosa, L., Medina, C., Morandé, J. A., Harmon, T. C., & Medellín-Azuara, J. (2024). Achieving Responsible Reclaimed Water Reuse for Vineyard Irrigation: Lessons from Napa Valley, California and Valle de Guadalupe, Baja California. Water, 16(19), 2817. https://doi.org/10.3390/w16192817