EstuarySAT Database Development of Harmonized Remote Sensing and Water Quality Data for Tidal and Estuarine Systems
Abstract
:1. Introduction
2. Materials and Methods
2.1. Water Quality Data Sources
2.2. Methods to Harmonize the Water Quality Datasets
2.3. Quality Assurance Processing for Water Quality Data
2.4. Sentinel-2 MSI Image Catalog Development and Pre-Processing
2.5. Spatially and Temporally Matching Sentinel-2 Surface Reflectances with In Situ Water Quality Data
2.6. Optical Water Classification and Clustering
3. Results
3.1. Database Characteristics
3.2. Chlorophyll Results
3.3. Other Water Quality Parameters
3.4. Fuzzy Cluster Analysis
4. Discussion
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bukaveckas, P.A.; Franklin, R.; Tassone, S.; Trache, B.; Egerton, T. Cyanobacteria and cyanotoxins at the river-estuarine transition. Harmful Algae 2018, 76, 11–21. [Google Scholar] [CrossRef] [PubMed]
- Kramer, B.J.; Davis, T.W.; Meyer, K.A.; Rosen, B.H.; Goleski, J.A.; Dick, G.J.; Oh, G.; Gobler, C.J. Nitrogen limitation, toxin synthesis potential, and toxicity of cyanobacterial populations in Lake Okeechobee and the St. Lucie River Estuary, Florida, during the 2016 state of emergency event. PLoS ONE 2018, 13, e0196278. [Google Scholar] [CrossRef] [PubMed]
- Preece, E.P.; Moore, B.C.; Hardy, F.J. Transfer of microcystin from freshwater lakes to Puget Sound, WA and toxin accumulation in marine mussels (Mytilus trossulus). Ecotoxicol. Environ. Saf. 2015, 122, 98–105. [Google Scholar] [CrossRef] [PubMed]
- Preece, E.P.; Hardy, F.J.; Moore, B.C.; Bryan, M. A review of microcystin detections in estuarine and marine waters: Environmental implications and human health risk. Harmful Algae 2017, 61, 31–45. [Google Scholar] [CrossRef]
- Tango, P.J.; Butler, W. Cyanotoxins in tidal waters of Chesapeake Bay. Northeast. Nat. 2008, 15, 403–416. [Google Scholar] [CrossRef]
- Tatters, A.O.; Howard, M.D.A.; Nagoda, C.; Busse, L.; Gellene, A.G.; Caron, D.A. Multiple stressors at the land-sea interface: Cyanotoxins at the land-sea interface in the southern California Bight. Toxins 2017, 9, 95. [Google Scholar] [CrossRef]
- Anderson, D. HABs in a changing world: A perspective on harmful algal blooms, their impacts, and research and management in a dynamic era of climactic and environmental change. Harmful Algae 2012, 2012, 3–17. [Google Scholar] [PubMed] [PubMed Central]
- Anderson, D.M. Marine harmful algal blooms (HABs) in the United States: History, current status and future trends. Harmful Algae 2021, 102, 101975. [Google Scholar] [CrossRef] [PubMed]
- Heisler, J.; Glibert, P.M.; Burkholder, J.M.; Anderson, D.M.; Cochlan, W.; Dennison, W.C.; Dortch, Q.; Gobler, C.J.; Heil, C.A.; Humphries, E.; et al. Eutrophication and harmful algal blooms: A scientific consensus. Harmful Algae 2008, 8, 3–13. [Google Scholar] [CrossRef]
- Paerl, H.W.; Otten, T.G. Harmful Cynobacterial Blooms: Causes, Consequences, and Controls. Microb. Ecol. 2013, 65, 995–1010. [Google Scholar] [CrossRef]
- EPA 820-S-13-001; Impacts of Climate Change on the Occurrence of Harmful Algal Blooms. USEPA, Office of Water: Washington, DC, USA, 2013.
- Srebotnjak, T.; Carr, G.; de Sherbinin, A.; Rickwood, C. A global Water Quality Index and hot-deck imputation of missing data. Ecol. Indic. 2012, 17, 108–119. [Google Scholar] [CrossRef]
- Coffer, M.; Schaeffer, B.; Foreman, K.; Porteous, A.; Loftin, A.; Stumpf, R.; Werdell, P.; Urquhart, E.; Albert, R.; Darling, J. Assessing cyanobacterial frequency and abundance at surface waters near drinking water intakes across the United States. Water Res. 2021, 201, 117377. [Google Scholar] [CrossRef]
- Read, E.K.; Carr, L.; De Cicco, L.; Dugan, H.A.; Hanson, P.C.; Hart, J.A.; Kreft, J.; Read, J.S.; Winslow, L.A. Water quality data for national-scale aquatic research: The Water Quality Portal. Water Resour. Res. 2017, 53, 1735–1745. [Google Scholar] [CrossRef]
- Ross, M.R.V.; Topp, S.N.; Appling, A.P.; Yang, X.; Kuhn, C.; Butman, D.; Simard, M.; Pavelsky, T.M. AquaSat: A data set to enable remote sensing of water quality for inland waters. Water Resour. Res. 2019, 55, 10012–10025. [Google Scholar] [CrossRef]
- Oziel, L.; Massicotte, P.; Babin, M.; Devred, E. Decadal changes in Arctic Ocean chlorophyll a: Bridging ocean color observations from the 1980s to present time. Remote Sens. Environ. 2022, 275, 113020. [Google Scholar] [CrossRef]
- Blondeau-Patissier, D.; Gower, J.F.R.; Dekker, A.G.; Phinn, S.R.; Brando, V.E. A review of ocean color remote sensing methods and statistical techniques for the detection mapping and analysis of phytoplankton blooms in coastal and open oceans. Progr. Oceanogr. 2014, 123, 123–144. [Google Scholar] [CrossRef]
- Schaeffer, B.A.; Myer, M.H. Resolvable estuaries for satellite derived water quality within the continental United States. Remote Sens. Lett. 2020, 11, 535–544. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Curlin, D.; Moses, W.J.; Yacobi, Y.Z. Remote Estimation of Chlorophyll-a Concentration in Inland, Estuarine, and Coastal Waters. In Advances in Environmental Remote Sensing: Sensors, Algorithms, and Applications; Weng, Q., Ed.; CRC Press: Boca Raton, LA, USA, 2011; Chapter 18. [Google Scholar]
- Maciel, F.P.; Haakonsson, S.; de Leon, L.P.; Bonilla, S.; Pedocchi, F. Satellite monitoring of chlorophyll-a threshold levels during an exceptional cyanobacterial bloom (2018–2019) in the Río de la Plata. Ribagua 2003, 10, 62–78. [Google Scholar] [CrossRef]
- Zhang, Y.; Lin, H.; Chuqun, C.; Chen, L.; Zhang, B.; Gitelson, A.A. Estimation of chlorophyll-a concentration in estuarine waters: Case study of the Pearl River estuary. South China Sea. Environ. Res. Lett. 2011, 6, 024016. [Google Scholar] [CrossRef]
- Li, H.; Li, X.; Song, D.; Nie, J.; Liang, S. Prediction on daily spatial distribution of chlorophyll-a in coastal seas using a synthetic method of remote sensing, machine learning and numerical modeling. Sci. Total Environ. 2024, 910, 168642. [Google Scholar] [CrossRef] [PubMed]
- Mouw, C.B.; Greb, S.; Aurin, D.; DiGiacomo, P.M.; Lee, Z.; Twardowski, M.; Binding, C.; Hu, C.; Ma, R.; Moore, T.; et al. Aquatic color radiometry remote sensing of coastal and inland waters: Challenges and recommendations for future satellite missions. Remote Sens. Environ. 2015, 160, 15–30, ISSN 0034-4257. [Google Scholar] [CrossRef]
- Salls, W.B.; Schaeffer, B.A.; Pahlevan, N.; Coffer, M.M.; Seegers, B.N.; Werdell, P.J.; Ferriby, H.; Stumpf, R.P.; Binding, C.E.; Keith, D.J. Expanding the Application of Sentinel-2 Chlorophyll Monitoring across United States Lakes. Remote Sens. 2024, 16, 1977. [Google Scholar] [CrossRef] [PubMed]
- Uudeberg, K.; Ansko, I.; Poru, G.; Ansper, A.; Reinart, A. Using Optical Water Types to Monitor Changes in Optically Complex Inland and Coastal Waters. Remote Sens. 2019, 11, 2297. [Google Scholar] [CrossRef]
- Morel, A.; Prieur, L. Analysis of variations in ocean color. Limnol. Oceanogr. 1977, 22, 709–722. [Google Scholar] [CrossRef]
- Spyrakos, E.; O’donnell, R.; Hunter, P.D.; Miller, C.; Scott, M.; Simis, S.G.H.; Neil, C.; Barbosa, C.C.F.; Binding, C.E.; Bradt, S.; et al. Optical types of inland and coastal waters. Limnol. Oceanogr. 2018, 63, 846–870. [Google Scholar] [CrossRef]
- Moore, T.S.; Campbell, J.W.; Dowell, M.D. A class-based approach to characterizing and mapping the uncertainty of the MODIS ocean chlorophyll product.pdf. Remote Sens. Environ. 2009, 113, 2424–2430. [Google Scholar] [CrossRef]
- Bi, S.; Li, Y.; Liu, G.; Song, K.; Xu, J.; Dong, X.; Cai, X.; Mu, M.; Miao, S.; Lyu, H. Assessment of algorithms for estimating chlorophyll-a concentration in inland waters: A round-robin scoring method based on the optically fuzzy clustering. IEEE Trans. Geosci. Remote Sens. 2021, 60, 1–17. [Google Scholar] [CrossRef]
- Stumpf, R.P.; Tyler, M.A. Satellite detection of bloom and pigment distributions in estuaries. Remote Sens. Environ. 1988, 24, 385–404. [Google Scholar] [CrossRef]
- Pahlevan, N.; Smith, B.; Schalles, J.; Binding, C.; Cao, Z.; Ma, R.; Alikas, K.; Kangro, K.; Gurlin, D.; Hà, N.; et al. Seamless retrievals of chlorophyll-a from Sentinel-2 (MSI) and Sentinel-3 (OLCI) in inland and coastal waters: A machine-learning approach. Remote Sens. Environ. 2020, 240, 111604. [Google Scholar] [CrossRef]
- Warren, M.A.; Simis, S.G.H.; Martinez-Vincent, V.; Poser, K.; Bresciani, M.; Alikas, K.; Spyrakos, E.; Giardino, C.; Ansper, A. Assessment of atmospheric correction algorithms for the Sentinel-2A MultiSpectral Imagery over coastal and inland waters. Remote Sens. Environ. 2019, 225, 267–289. [Google Scholar] [CrossRef]
- Alvarez, K.; Bruce, M.; Ly, R.; Payne, S. Assessing Estuarine Ecosystems in California for Improved Wetland Monitoring and Management. DEVELOP Technical Report. 2021. Available online: https://ntrs.nasa.gov/citations/20210014697 (accessed on 2 September 2024).
- Le, C.; Li, Y.; Zha, Y.; Sun, D.; Huang, C.; Zhang, H. Remote estimation of chlorophyll a in optically complex waters based on optical classification. Remote Sens. Environ. 2011, 115, 725–737. [Google Scholar] [CrossRef]
- Sorrano, P.A.; Bissell, E.G.; Cheruvelil, K.S.; Christel, S.T.; Collins, S.M.; Fergus, C.E.; Filstrup, C.T.; Lapierre, J.-F.; Lottig, N.R.; Oliver, S.K.; et al. Building a multi-scaled geospatial temporal ecology database from disparate data sources: Fostering open science and data reuse. GigaScience 2015, 4, 28. [Google Scholar] [CrossRef] [PubMed]
- Soranno, P.A.; Bacon, L.C.; Beauchene, M.; Bednar, K.E.; Bissell, E.G.; Boudreau, C.K.; Boyer, M.G.; Bremigan, M.T.; Carpenter, S.R.; Carr, J.E.; et al. LAGOS-NE: A multi-scaled geospatial and temporal database of lake ecological context and water quality for thousands of U.S. lakes. GigaScience 2017, 6, 1–22. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2021; Available online: https://www.R-project.org/ (accessed on 31 December 2021).
- Main-Knorn, M.; Pflug, B.; Louis, J.; Debaecker, V.; Müller-Wilm, U.; Gascon, F. Sen2Cor for Sentinel-2. Proceedings of SPIE 20171042704-2. 2018. Available online: https://elib.dlr.de/119390/1/S-16-NIM_Main-Knorn_etal_Sen2Cor_cloud_masking_EARSeL2018_final.pdf (accessed on 19 September 2024).
- Gordon, H.R. Atmospheric correction of ocean color imagery in the Earth Observing System era. J. Geophys. Res. 1997, 102, 17081–17106. [Google Scholar] [CrossRef]
- Shen, X.; Detenbeck, N.; Rego, S. Paired Sentinel-2—Water Quality Database for Estuaries and Tidal Freshwater Rivers. Available in Estuary Data Mapper. 2023. Available online: www.epa.gov/edm (accessed on 19 September 2024).
- Kalinowski, T.; Ushey, K.; Allaire, J.J.; Tang, Y. Package ‘Reticulate’. 2023. Available online: https://cran.r-project.org/web/packages/reticulate/reticulate.pdf (accessed on 19 September 2024).
- Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 2017, 202, 18–27. [Google Scholar] [CrossRef]
- ESA. Sentinel-2 User Handbook. European Space Agency; ESA Standard Document. Issue 1; Rev 2 2015. ESA SNAP—ESA Sentinel Application Platform V2.0.2; ESA: Paris, France, 2022. [Google Scholar]
- Pekel, J.F.; Cottam, A.; Gorelick, N.; Belward, A.S. High-resolution mapping of global surface water and its long-term changes. Nature 2016, 540, 418–422. [Google Scholar] [CrossRef]
- Bailey, S.W.; Werdell, P.J. A multi-sensor approach for the on-orbit validation of ocean color satellite data products. Remote Sens. Environ. 2006, 102, 12–23. [Google Scholar] [CrossRef]
- Bricker, S.B.; Ferreira, J.G.; Simas, T. An integrated methodology for assessment of estuarine trophic status. Ecol. Model. 2003, 169, 39–60. [Google Scholar] [CrossRef]
- Jackson, T.; Sathyendranath, S.; Mélin, F. An improved optical classification scheme for the Ocean Colour Essential Climate Variable and its applications. Remote Sens. Environ. 2017, 203, 152–161. [Google Scholar] [CrossRef]
- Nikhil, R.P.; Bezdek, J.C.; Hathaway, R.J. Sequential competitive learning and the fuzzy c-means clustering algorithms. Neural Netw. 1996, 9, 787–796. [Google Scholar]
- Arar, E.J.; Collins, G.B. Method 445.0: In Vitro Determination of Chlorophyll a and Pheophytin a in Marine and Freshwater Algae by Fluorescence; U.S. Environmental Protection Agency: Washington, DC, USA, 1997. [Google Scholar]
- Arar, E.J. Method 447.0—Determination of Chlorophylls a and b and Identification of Other Pigments of Interest in Marine and Freshwater Algae Using High Performance Liquid Chromatography with Visible Wavelength Detection; U.S. Environmental Protection Agency: Washington, DC, USA, 1997. [Google Scholar]
- Zibordi, G.; Berthon, J.F.; Mélin, F.; D’Alimonte, D. Cross-site consistent in situ measurements for satellite ocean color applications: The BiOMaP radiometric dataset. Remote Sens. Environ. 2011, 115, 2104–2115. [Google Scholar] [CrossRef]
- USGS. Improved Water Quality Helps Long Island Sound. 2016. Available online: https://www.usgs.gov/news/state-news-release/improved-water-quality-upstream-helps-long-island-sound (accessed on 19 September 2024).
- CBP. Guide to Using Chesapeake Bay Program Water Monitoring Data. EPA 903-R-12-001; U.S. Environmental Protection Agency: Washington, DC, USA, 2012; p. 155. [Google Scholar]
- Porra, R.; Thompson, W.; Kriedemann, P. Determination of accurate extinction coefficients and simultaneous equations for assaying chlorophylls a and b extracted with four different solvents: Verification of the concentration of chlorophyll standards by atomic absorption spectroscopy. Biochim. Biophys. Acta-Bioenerg. 1989, 975, 384–394. [Google Scholar] [CrossRef]
- Weber, C.I.; Fay, L.A.; Collins, G.B.; Rathke, D.E.; Tobin, J. A Review of Methods for the Analysis of Chlorophyll in Periphyton and Plankton of Marine and Freshwater Systems. Technical Bulletin OHSU-TB-15; Ohio Sea Grant College Program: Columbus, OH, USA, 1986; pp. 1–71. [Google Scholar]
- Carlson, R.E.; Simpson, J. A Coordinators Guide to Volunteer Lake Monitoring Methods; North American Lake Management Society: Caledonia, MN, USA, 1996; p. 96. [Google Scholar]
- Dos Santos, A.; Calijuri, M.C.; Moraes, E.; Adorno, M.; Falco, P.; Carvalho, D.; Deberdt, G.; Benassi, S. Comparison of three methods for chlorophyll determination: Spectrophotometry and fluorimetry in samples containing pigment mixtures and spectrophotometry in samples with separate pigments through High Performance Liquid Chromatography. Acta Limnol. Bras. 2003, 15, 7–18. [Google Scholar]
- Murray, A.P.; Gibbs, C.F.; Longmore, A.R.; Flett, D.J. Determination of chlorophyll in marine waters: Intercomparison of a rapid HPLC method with full HPLC, spectrophotometric and fluorometric methods. Mar. Chem. 1986, 19, 211–227. [Google Scholar] [CrossRef]
- Roesler, C.; Uitz, J.; Claustre, H.; Boss, E.; Xing, X.; Organelli, E.; Briggs, N.; Bricaud, A.; Schmechtig, C.; Poteau, A.; et al. Recommendations for obtaining unbiased chlorophyll estimates from in situ chlorophyll fluorometers: A global analysis of WET Labs ECO sensors. Limnol. Oceanogr. Methods 2017, 15, 572–585. [Google Scholar] [CrossRef]
- Travers-Smith, H. Validation of Non-photochemical Quenching Corrections for Chlorophyll-a Measurements Aboard Ships of Opportunity. Front. Mar. Sci. 2021, 8, 686750. [Google Scholar] [CrossRef]
- Kurtz, J.C.; Detenbeck, N.D.; Engle, V.D.; Ho, K.; Smith, L.M.; Jordan, S.J.; Campbell, D. Classifying Coastal Waters: Current Necessity and Historical Perspective. Estuaries Coasts 2006, 29, 107–123. [Google Scholar] [CrossRef]
- Reynolds, R.A.; Stramski, D.; Neukermans, G. Optical backscattering by particles in Arctic seawater and relationships to particle mass concentration, size distribution, and bulk composition. Limnol. Oceanogr. 2016, 61, 1869–1890. [Google Scholar] [CrossRef]
- Chuanmin, H. A novel ocean color index to detect floating algae in the global oceans. Remote Sens. Environ. 2009, 113, 2118–2129. [Google Scholar]
- Mishra, S.; Mishra, D.R. Normalized Difference Chlorophyll Index: A Novel Model for Remote Estimation of Chlorophyll—A Concentration in Turbid Productive Waters. Remote Sens. Environ. 2012, 117, 394–406. [Google Scholar] [CrossRef]
- Tamvakis, T.; Tsirtsis, G.; Karydis, M.; Patsidis, K.; Giorgos, K.D. Drivers of harmful algal blooms in coastal areas of Eastern Mediterranean: A machine learning methodological approach. Math. Biosci. Eng. 2021, 18, 6484–6505. [Google Scholar] [CrossRef]
Geographic Area | Ecoregion | Description | Agency | Online Source |
---|---|---|---|---|
Florida | Floridian | Florida Department of Environmental Protection Freshwater Algal Bloom Monitoring Program | Florida Department of Environmental Protection | https://floridadep.gov/dear/algal-bloom/content/algal-bloom-sampling-results, accessed on 28 October 2020 |
Florida | Floridian | Florida Coastal Everglades Data | Florida Coastal Everglades (LTER) | https://fcelter.fiu.edu/, accessed on 7 August 2021 |
Florida | Floridian | Hurricane Harvey Impacts on Sediment Biogeochemistry | Biological and Chemical Oceanography Data Management Office | https://www.bco-dmo.org/dataset/839436, accessed on 8 August 2021 |
Connecticut | Virginian | Buoy data from monitoring operations in Mystic River, CT | U.S. Environmental Protection Agency | https://www.epa.gov/mysticriver/basic-information-about-mystic-river-buoy, accessed on 3 July 2021 |
California | Northern California | Real-time water quality monitoring stations throughout California | Department of Water Resources | https://cdec.water.ca.gov/, accessed on 2 April 2021 |
California | Northern California | Water Quality—San Francisco Bay Project | US Geological Survey (USGS) | https://sfbay.wr.usgs.gov/water-quality-database/, accessed on 8 August 2021 |
Chesapeake Bay | Virginian | Chesapeake Bay Water Quality Monitoring Program | Chesapeake Bay Program | https://www.chesapeakebay.net/what/downloads/cbp-water-quality-database-1984-present, accessed on 4 July 2021 |
Long Island Sound | Virginian | LISICOS—The Long Island Sound Integrated Coastal Observing System | Connecticut DEEP | https:/Lisicos.uconn.edu/data_stn.php, accessed on 3 April 2021 |
Maryland | Virginian | Maryland Eyes on the Bay | Maryland Department of Natural Resources | http://eyesonthebay.dnr.maryland.gov/, accessed on 4 July 2021 |
Massachusetts | Gulf of Maine/Bay of Fundy | Buoy data from the Charles River | Massachusetts Water Resources Authority | https://www.mwra.com/search/media?s=Charles+River, accessed on 3 July 2021; https://www.epa.gov/charlesriver/live-water-quality-data-lower-charles-river, accessed on 3 July 2021 |
New York | Virginian | Hudson River Environmental Conditions Observing System | HRECOS & Partners | https://hrecos.org, accessed on 10 February 2021 |
Puget Sound | Oregon, Washington, Vancouver | Center for Coastal Margin Observation and Prediction | CMOP & Partners | http://www.stccmop.org/, accessed on 29 October 2020 |
Rhode Island | Virginian | Narragansett Bay Fixed Site Monitoring Network | Rhode Island Department of Environmental Management and Partners | http://www.dem.ri.gov/programs/emergencyresponse/bart/stations.php, accessed on 16 December 2020 |
Texas | Northern Gulf of Mexico | Hurricane Harvey Texas Lagoon data | Biological and Chemical Oceanography Data Management Office | https://www.bco-dmo.org/deployment/805271, accessed on 8 August 2021 |
Texas | Northern Gulf of Mexico | Hurricane Harvey Texas Lagoon data | Biological and Chemical Oceanography Data Management Office | https://www.bco-dmo.org/deployment/805239, accessed on 8 August 2021 |
Continental US | various | U.S. Geological Survey Water Data for the Nation | USGS | https://waterdata.usgs.gov, accessed on 4 February 2021 |
Continental US | various | AquaSat—Paired water quality and remote sensing data | M. Ross—Colorado State University | https://github.com/GlobalHydrologyLab/AquaSat, accessed on 2 June 2021 |
New England Region | Virginian | Regional Ocean Observing System | NERACOOS & Partners | https://neracoos.org, accessed on 29 October 2020 |
US Waters | various | Historical/Real-time data from water quality buoy stations | US Environmental Protection Agency | http://www.epa.gov, accessed on 4 February 2021 |
US Waters | various | USGS datasets and reports for various sites throughout the US | US Geological Survey (USGS) | https://usgs.data.gov, accessed on 11 February 2021 |
Coastal US | various | National Estuarine Reserve System | NOAA | https://cdmo.baruch.sc.edu/get/landing.cfm, accessed on 15 April 2021 |
Continental US | various | USGS Data Science for Water Resources | U.S. Geological Survey | https://www.usgs.gov/mission-areas/water-resources, accessed on 11 February 2021 |
South Coastal US | various | Southeast Coastal Ocean Observing Regional Association (SECOORA) | SECOORA | https://portal.secoora.org, accessed on 14 December 2020 |
(a) | ||||||
---|---|---|---|---|---|---|
Parameter | N | Mean | Std. Dev. | Min | Max | Percent Obs. |
Depth of sample (m) | 84,344 | 1.20 | 0.52 | 0.13 | 3.00 | 99.89% |
Temperature (C) | 84,438 | 8.40 | 12.00 | 0.00 | 34.00 | 100.00% |
Dissolved oxygen (mg/L) | 84,438 | 2.80 | 3.80 | 0.00 | 10.00 | 100.00% |
Salinity (ppt) | 84,438 | 3.80 | 6.10 | 0.00 | 36.00 | 100.00% |
Turbidity (NTU) | 84,160 | 9.40 | 14.00 | −0.50 | 332.00 | 99.67% |
Chlorophyll (µg/L) | 84,438 | 3.30 | 13.00 | 0.00 | 420.40 | 100.00% |
Total observations | 84,438 | |||||
(b) | ||||||
Parameter | N | Mean | Std. Dev. | Min | Max | Percent Obs. |
Depth of sample (m) | 9761 | 0.64 | 0.46 | 0.10 | 3.00 | 100.00% |
Temperature (C) | 9118 | 18.65 | 8.99 | 3.81 | 33.62 | 93.41% |
Dissolved oxygen (mg/L) | 8828 | 11.91 | 3.61 | 0.08 | 26.59 | 90.44% |
Salinity (ppt) | 8923 | 14.73 | 5.99 | 0.06 | 35.70 | 91.41% |
Turbidity (NTU) | 9110 | 5.34 | 9.58 | 0.00 | 147.68 | 93.33% |
Chlorophyll (µg/L) | 9761 | 7.77 | 7.15 | 0.11 | 200.41 | 100.00% |
Total observations | 9761 |
Processing Level | Total Observations | Level 1C | Level 2A | Level 1C Percent Total (In Vivo/In Vitro) | Level 2A Percent Total (In Vivo/In Vitro) |
---|---|---|---|---|---|
All Observations | 299,851 | 252,536 | 47,315 | 84.22% | 15.78% |
Matched | 94,199 | 84,438 | 9761 | ||
Matched Chlorophyll | |||||
In Vivo | 93,376 | 84,193 | 9183 | 90.17% | 9.83% |
In Vitro | 823 | 245 | 578 | 29.77% | 70.23% |
TSIc | Chlorophyll Range (µg/L) | Level 1C Frequency | Level 2A Frequency | Percent Total Level 1C | Percent Total Level 2A |
---|---|---|---|---|---|
Low | 0–≤5 | 75,690 | 4998 | 89.6% | 51.2% |
Medium | >5–≤20 | 7044 | 4418 | 8.3% | 44.4% |
High | >20–≤60 | 1301 | 329 | 1.5% | 3.3% |
Hypereutrophic | >60 | 403 | 16 | 0.5% | 0.2% |
Totals | 84,438 | 9761 |
Parameter | Cluster 1 | Cluster 2 | Cluster 3 | Cluster 4 |
---|---|---|---|---|
Mean Temperature (°C) | 17.7 | 16.7 | 20.4 | 19.7 |
Range | 3.8–31.7 | 3.2–32.9 | 4.3–32.5 | 4.0–33.6 |
Interquartile | 7.8–26.7 | 7.7–25.1 | 15.4–27.5 | 9.2–27.7 |
Mean Dissolved Oxygen (mg/L) | 12.4 | 11.6 | 10.9 | 12.0 |
Range | 3.6–20 | 0.5–18.2 | 0.1–26.6 | 4.8–26.6 |
Interquartile | 10.0–14.7 | 9.3–14.2 | 7.8–14.2 | 9.4–14.8 |
Mean Salinity (ppt) | 17.5 | 18.7 | 11.6 | 12.2 |
Range | 7.8–35.7 | 0.1–32.1 | 0.1–20.3 | 0.1–23.4 |
Interquartile | 14.3–20.1 | 15.1–23.1 | 8.7–14.5 | 7.2–16.9 |
Mean Turbidity (NTU) | 2.6 | 5.5 | 14.7 | 2.4 |
Range | 0–17.5 | 0–112.6 | 2.4–158 | 2.4–36.6 |
Interquartile | 2.4–2.4 | 2.4–2.4 | 2.4–36.6 | 2.4–2.4 |
Mean Chlorophyll a (µg/L) | 7.2 | 8.6 | 6.0 | 9.8 |
Range | 0.1–119 | 0.5–200.4 | 0.1–56.1 | 0.4–49.3 |
Interquartile | 3.5–9.4 | 4.6–9.6 | 3.1–7.7 | 5.2–12.8 |
Cluster | 1 | 2 | 3 | 4 | Total |
---|---|---|---|---|---|
Parameters included | |||||
All | 0.1276 | 0.0828 | 0.0608 | 0.1421 | 0.1036 |
Chlorophyll | 0.6612 | 0.6711 | 0.4798 | 0.5204 | 0.5805 |
Dissolved oxygen | 0.7376 | 0.5584 | 0.5037 | 0.4322 | 0.5443 |
Salinity | 0.4673 | 0.4746 | 0.3238 | 0.5371 | 0.4488 |
Temperature | 0.7168 | 0.5179 | 0.5325 | 0.5376 | 0.567 |
Turbidity | 0.9843 | 0.9429 | 0.6615 | 0.0002 | 0.6057 |
Salinity + Chlorophyll | 0.4118 | 0.3587 | 0.263 | 0.3599 | 0.3432 |
Dissolved oxygen | 0.3065 | 0.256 | 0.176 | 0.2852 | 0.2544 |
Temperature | 0.2234 | 0.1956 | 0.0968 | 0.2401 | 0.1863 |
Turbidity | 0.4419 | 0.4162 | 0.3121 | 0.4118 | 0.3913 |
Salinity + Temperature + | |||||
Chlorophyll | 0.1718 | 0.1203 | 0.085 | 0.1843 | 0.1388 |
Dissolved oxygen | 0.1782 | 0.1096 | 0.0612 | 0.1725 | 0.1296 |
Turbidity | 0.2153 | 0.1749 | 0.0862 | 0.2126 | 0.1691 |
Salinity + Temperature + Dissolved oxygen + Chlorophyll | 0.128 | 0.083 | 0.0632 | 0.1451 | 0.1051 |
Turbidity | 0.1764 | 0.1033 | 0.0593 | 0.162 | 0.1242 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rego, S.A.; Detenbeck, N.E.; Shen, X. EstuarySAT Database Development of Harmonized Remote Sensing and Water Quality Data for Tidal and Estuarine Systems. Water 2024, 16, 2721. https://doi.org/10.3390/w16192721
Rego SA, Detenbeck NE, Shen X. EstuarySAT Database Development of Harmonized Remote Sensing and Water Quality Data for Tidal and Estuarine Systems. Water. 2024; 16(19):2721. https://doi.org/10.3390/w16192721
Chicago/Turabian StyleRego, Steven A., Naomi E. Detenbeck, and Xiao Shen. 2024. "EstuarySAT Database Development of Harmonized Remote Sensing and Water Quality Data for Tidal and Estuarine Systems" Water 16, no. 19: 2721. https://doi.org/10.3390/w16192721
APA StyleRego, S. A., Detenbeck, N. E., & Shen, X. (2024). EstuarySAT Database Development of Harmonized Remote Sensing and Water Quality Data for Tidal and Estuarine Systems. Water, 16(19), 2721. https://doi.org/10.3390/w16192721