Response of Streamflow to Future Land Use and Cover Change and Climate Change in the Source Region of the Yellow River
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Model and Data Preprocessing
2.3. Model Calibration and Validation
2.4. Mann–Kendall Trend Test
2.5. Scenario Setting
3. Results and Discussion
3.1. Validation and Adaptability Evaluation of DHSVM in the Source Region of the Yellow River (SRYR)
3.2. Future Grassland and Climate Dynamics in the SRYR
3.3. Streamflow Analysis under Future LUCC (Land Use and Cover Change) and Climate Change
3.3.1. Analysis of Mean Flow, Change Rate, and Coefficient of Variation
3.3.2. Analysis of Extreme Monthly Average Flows
3.3.3. Analysis of Changes in Monthly Average Flow Distribution
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Yang, K.; Dong, Y. Research on restricting factors and countermeasures of ecological protection and high-quality development of Yellow River basin—Analysis based on the multi-dimensional framework of “element-space-time”. J. Hydraul. Eng. 2020, 51, 1038–1047. [Google Scholar]
- Li, G. The speech of Li Guoying at 2022 National Working Conference on Water Resources. China Water Resour. 2022, 2, 1–10. [Google Scholar]
- Zhang, J.; Cao, Z.; Jin, X.; Li, C. Research on comprehensive evaluation of the development quality of the Yellow River Basin. J. Hydraul. Eng. 2021, 52, 917–926. [Google Scholar]
- Wang, Y.; Chen, Y.; Wang, H.; Lv, Y.; Hao, Y.; Cui, X.; Wang, Y.; Hu, R.; Xue, K.; Fu, B. Ecosystem Change and Its Ecohydrological Effect in the Yellow River Basin. Bull. Natl. Nat. Sci. Found. China 2021, 35, 520–528. [Google Scholar]
- Wang, T.; Yang, H.; Yang, D.; Qin, Y.; Wang, Y. Quantifying the streamflow response to frozen ground degradation in the source region of the Yellow River within the Budyko framework. J. Hydrol. 2018, 558, 301–313. [Google Scholar] [CrossRef]
- Wang, L.; Zhu, Q.A.; Zhang, J.; Liu, J.; Zhu, C.F.; Qu, L.S. Vegetation dynamics alter the hydrological interconnections between upper and mid-lower reaches of the Yellow River Basin, China. Ecol. Indic. 2023, 148, 110083. [Google Scholar] [CrossRef]
- He, X.; Liang, J.; Zeng, G.; Yuan, Y.; Li, X. The Effects of Interaction between Climate Change and Land-Use/Cover Change on Biodiversity-Related Ecosystem Services. Glob. Chall. 2019, 3, 1800095. [Google Scholar] [CrossRef]
- Cuo, L.; Lettenmaier, D.P.; Alberti, M.; Richey, J.E. Effects of a Century of Land Cover and Climate Change on the Hydrology of the Puget Sound Basin. Hydrol. Process. 2009, 23, 907–933. [Google Scholar] [CrossRef]
- Ning, J.; Liu, J.; Kuang, W.; Xu, X.; Zhang, S.; Yan, C.; Li, R.; Wu, S.; Hu, Y.; Du, G.; et al. Spatiotemporal patterns and characteristics of land-use change in China during 2010–2015. J. Geogr. Sci. 2018, 28, 547–562. [Google Scholar] [CrossRef]
- Zhou, G.; Wei, X.; Chen, X.; Zhou, P.; Liu, X.; Xiao, Y.; Sun, G.; Scott, D.F.; Zhou, S.; Han, L.; et al. Global pattern for the effect of climate and land cover on water yield. Nat. Commun. 2015, 6, 40. [Google Scholar] [CrossRef]
- Yang, W.; Long, D.; Bai, P. Impacts of future land cover and climate changes on runoff in the mostly afforested river basin in North China. J. Hydrol. 2019, 570, 201–219. [Google Scholar] [CrossRef]
- Chen, L.; Liu, C. Influence of climate and land-cover change on runoff of the source regions of Yellow River. China Environ. Sci. 2007, 27, 559–565. [Google Scholar]
- Thanapakpawin, P.; Richey, J.; Thomas, D.; Rodda, S.; Campbell, B.; Logsdon, M. Effects of landuse change on the hydrologic regime of the Mae Chaem river basin, NW Thailand. J. Hydrol. 2007, 334, 215–230. [Google Scholar] [CrossRef]
- Hilker, T.; Natsagdorj, E.; Waring, R.H.; Lyapustin, A.; Wang, Y. Satellite observed widespread decline in Mongolian grasslands largely due to overgrazing. Glob. Chang. Biol. 2014, 20, 418–428. [Google Scholar] [CrossRef]
- Zhu, Q.; Chen, H.; Peng, C.; Liu, J.; Piao, S.; He, J.-S.; Wang, S.; Zhao, X.; Zhang, J.; Fang, X.; et al. An early warning signal for grassland degradation on the Qinghai-Tibetan Plateau. Nat. Commun. 2023, 14, 6406. [Google Scholar] [CrossRef]
- Jaramillo, F.; Prieto, C.; Lyon, S.W.; Destouni, G. Multimethod assessment of evapotranspiration shifts due to non-irrigated agricultural development in Sweden. J. Hydrol. 2013, 484, 55–62. [Google Scholar] [CrossRef]
- Zuo, Q.; Ding, X.; Cui, G.; Zhang, W. Yellow River Basin Management under Pressure: Present State, Restoration and Protection II: Lessons from a Special Issue. Water 2024, 16, 999. [Google Scholar] [CrossRef]
- Yi, D. Simulation and Analysis of Runoff in the Source Region of the Yellow River Based on CMIP6 Climate Model. Master’s Thesis, Northwest A&F University, Xianyang, China, 2022. [Google Scholar]
- Liu, Y.; Su, Y.; Wang, L.; Zhao, Y. Simulation and Evaluation of Runoff in Tributary of Weihe River Basin in Western China. Water 2024, 16, 221. [Google Scholar] [CrossRef]
- Yan, Y. Simulation of Water Resources in the Upper Reaches of the Yellow River and Its Future Evolution. Master’s Thesis, East China Normal University, Shanghai, China, 2017. [Google Scholar]
- Jia, H.; Li, X.; Wen, J.; Chen, Y. Runoff change simulation and future trend projection in the source area of the Yellow River. Resour. Sci. 2022, 44, 1292–1304. [Google Scholar] [CrossRef]
- Chawla, I.; Mujumdar, P.P. Isolating the impacts of land use and climate change on streamflow. Hydrol. Earth Syst. Sci. 2015, 19, 3633–3651. [Google Scholar] [CrossRef]
- Wei, J.; Chang, J.; Chen, L. Runoff change in upper reach of Yellow River under future climate change based on VIC model. J. Hydroelectr. Eng. 2016, 35, 65–74. [Google Scholar]
- Han, Q.; Xue, L.; Qi, T.; Liu, Y.; Yang, M.; Chu, X.; Liu, S. Assessing the Impacts of Future Climate and Land-Use Changes on Streamflow under Multiple Scenarios: A Case Study of the Upper Reaches of the Tarim River in Northwest China. Water 2024, 16, 100. [Google Scholar] [CrossRef]
- Zhu, T. Attribution Analysis of Runoff Change in the YellowRiver Basin under Climate Model. Master’s Thesis, Zhengzhou University, Zhengzhou, China, 2022. [Google Scholar]
- He, S.; Chen, K.; Liu, Z.; Deng, L. Exploring the impacts of climate change and human activities on future runoff variations at the seasonal scale. J. Hydrol. 2023, 619, 129382. [Google Scholar] [CrossRef]
- Beven, K.; Freer, J. Equifinality, data assimilation, and uncertainty estimation in mechanistic modelling of complex environmental systems using the GLUE methodology. J. Hydrol. 2001, 249, 11–29. [Google Scholar] [CrossRef]
- Wang, Z.; Tang, Q.; Wang, D.; Xiao, P.; Xia, R.; Sun, P.; Feng, F.X. Attributing trend in naturalized streamflow to temporally explicit vegetation change and climate variation in the Yellow River basin of China. Hydrol. Earth Syst. Sci. 2022, 26, 5291–5314. [Google Scholar] [CrossRef]
- Wang, M. Precipitation Runoff Trend in the Source Region of the Yellow River under Future Climate Change. Master’s Thesis, Qinghai University, Xining, China, 2019. [Google Scholar]
- Ji, G.; Lai, Z.; Xia, H.; Liu, H.; Wang, Z. Future Runoff Variation and Flood Disaster Prediction of the Yellow River Basin Based on CA-Markov and SWAT. Land 2021, 10, 421. [Google Scholar] [CrossRef]
- Yang, X.; Zhou, B.; Xu, Y.; Han, Z. CMIP6 Evaluation and Projection of Temperature and Precipitation over China. Adv. Atmos. Sci. 2021, 38, 817–830. [Google Scholar] [CrossRef]
- Zhou, T.; Zou, L.; Chen, X. Commentary on the Coupled Model Intercomparison Project Phase 6 (CMIP6). Progress. Inquis. Mutat. Clim. 2019, 15, 445–456. [Google Scholar]
- Zhang, L.; Chen, X.; Xin, X. Short commentary on CMIP6 Scenario Model Intercomparison Project (ScenarioMIP). Progress. Inquis. Mutat. Clim. 2019, 15, 519–525. [Google Scholar]
- Wang, J.; Liu, S.; Hao, Y.; Tang, J. Change trend of runoff in source region of Yellow River under A1B scenario. J. Hohai Univ. Nat. Sci. 2014, 42, 95–100. [Google Scholar]
- Zhao, F.; Xu, Z. Comparative analysis on downscaled climate scenarios for headwater catchment of Yellow River using SDS and Delta methods. Acta Meteorol. Sin. 2007, 65, 653–662. [Google Scholar]
- Zhao, M.; Su, B.; Jiang, T.; Wang, A.; Tao, H. Simulation and Projection of Precipitation in the Upper Yellow River Basin by CMIP6 Multi-Model Ensemble. Plateau Meteorol. 2021, 40, 547–558. [Google Scholar]
- Alaniz, A.J.; Smith-Ramirez, C.; Rendon-Funes, A.; Hidalgo-Corrotea, C.; Carvajal, M.A.; Vergara, P.M.; Fuentes, N. Multiscale spatial analysis of headwater vulnerability in South-Central Chile reveals a high threat due to deforestation and climate change. Sci. Total Environ. 2022, 849, 157930. [Google Scholar] [CrossRef]
- Martínez-Retureta, R.; Aguayo, M.; Abreu, N.J.; Urrutia, R.; Echeverría, C.; Lagos, O.; Rodríguez-López, L.; Duran-Llacer, I.; Barra, R.O. Influence of Climate and Land Cover/Use Change on Water Balance: An Approach to Individual and Combined Effects. Water 2022, 14, 2304. [Google Scholar] [CrossRef]
- Pham Thi Thao, N.; Dao Nguyen, K.; Nguyen Thi Thuy, T.; Tran Van, T.; Fang, S. Hydrological impacts of future climate and land use/cover changes in the Lower Mekong Basin: A case study of the Srepok River Basin, Vietnam. Environ. Monit. Assess. 2022, 194 (Suppl. S2), 768. [Google Scholar]
- Si, J.; Li, J.; Lu, S.; Qi, X.; Zhang, X.; Bao, W.; Zhang, X.; Zhou, S.; Jin, C.; Qi, L.; et al. Effects of Climate Change on Surface Runoff and Soil Moisture in the Source Region of the Yellow River. Water 2023, 15, 2104. [Google Scholar] [CrossRef]
- Joseph, J.; Ghosh, S.; Pathak, A.; Sahai, A.K. Hydrologic impacts of climate change: Comparisons between hydrological parameter uncertainty and climate model uncertainty. J. Hydrol. 2018, 566, 1–22. [Google Scholar] [CrossRef]
- Wilby, R.L.; Harris, I. A framework for assessing uncertainties in climate change impacts: Low-flow scenarios for the River Thames, UK. Water Resour. Res. 2006, 42, W02419. [Google Scholar] [CrossRef]
- Zhang, H.; Huang, G.H.; Wang, D.; Zhang, X. Uncertainty assessment of climate change impacts on the hydrology of small prairie wetlands. J. Hydrol. 2011, 396, 94–103. [Google Scholar] [CrossRef]
- Trolle, D.; Nielsen, A.; Andersen, H.E.; Thodsen, H.; Olesen, J.E.; Borgesen, C.D.; Refsgaard, J.C.; Sonnenborg, T.O.; Karisson, I.B.; Christensen, J.P.; et al. Effects of changes in land use and climate on aquatic ecosystems: Coupling of models and decomposition of uncertainties. Sci. Total Environ. 2019, 657, 627–633. [Google Scholar] [CrossRef]
- Mainali, S.; Sharma, S. Climate Change Effects on Rainfall Intensity-Duration-Frequency (IDF) Curves for the Lake Erie Coast Using Various Climate Models. Water 2023, 15, 4063. [Google Scholar] [CrossRef]
- Yutong, Z.; Yuefei, H.; Sha, Z.; Keyi, W.; Guangqian, W. Effect partition of climate and catchment changes on runoff variation at the headwater region of the Yellow River based on the Budyko complementary relationship. Sci. Total Environ. 2018, 643, 1166–1177. [Google Scholar]
- Xu, Y.; Yu, L.; Peng, D.; Zhao, J.; Cheng, Y.; Liu, X.; Li, W.; Meng, R.; Xu, X.; Gong, P. Annual 30-m land use/land cover maps of China for 1980-2015 from the integration of AVHRR, MODIS and Landsat data using the BFAST algorithm. Sci. China-Earth Sci. 2020, 63, 1390–1407. [Google Scholar] [CrossRef]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop Evapotranspiration: Guidelines for Computing Crop Water Requirements; Irrigation and Drainage Paper No 56; Food and Agriculture Organization of the United Nations (FAO): Rome, Italy, 1998. [Google Scholar]
- Maidment, D.R. Handbook of Hydrology; Science Press: New York, NY, USA, 2008. [Google Scholar]
- Liao, W.; Liu, X.; Xu, X.; Chen, G.; Liang, X.; Zhang, H.; Li, X. Projections of land use changes under the plant functional type classification in different SSP-RCP scenarios in China. Sci. Bull. 2020, 65, 1935–1947. [Google Scholar] [CrossRef]
- Fang, G.H.; Yang, J.; Chen, Y.N.; Zammit, C. Comparing bias correction methods in downscaling meteorological variables for a hydrologic impact study in an arid area in China. Hydrol. Earth Syst. Sci. 2015, 19, 2547–2559. [Google Scholar] [CrossRef]
- M’Po, Y.N.T.; Lawin, A.E.; Oyerinde, G.T.; Yao, B.K.; Afouda, A.A. Comparison of Daily Precipitation Bias Correction Methods Based on Four Regional Climate Model Outputs in Ouémé Basin, Benin. Hydrology 2017, 4, 58–71. [Google Scholar] [CrossRef]
- Mahmood, R.; Jia, S.; Tripathi, N.K.; Shrestha, S. Precipitation Extended Linear Scaling Method for Correcting GCM Precipitation and Its Evaluation and Implication in the Transboundary Jhelum River Basin. Atmosphere 2018, 9, 160. [Google Scholar] [CrossRef]
- Zhang, L. Hydrological Simulations and Scenario Analyses in the Upper Heihe River Basin Using the DHSVM and SWAT Models. Ph.D. Thesis, University of Chinese Academy of Sciences, Beijing, China, 2017. [Google Scholar]
- Zhao, Y. Research on the Distributed Model Simulation of theSpatial/ Temporal Hydrological Characteristics in a Cold Alpine Basin. Master’s Thesis, Nanjing Normal University, Nanjing, China, 2019. [Google Scholar]
- Luz; Adriana; Cuartas; Javier; Tomasella; Antonio; Donato; Nobre; Carlos; Afonso, Distributed hydrological modeling of a micro-scale rainforest watershed in Amazonia: Model evaluation and advances in calibration using the new HAND terrain model. J. Hydrol. 2012, 462–463, 15–27.
- Cuo, L.; Giambelluca, T.W.; Ziegler, A.D. Lumped parameter sensitivity analysis of a distributed hydrological model within tropical and temperate catchments. Hydrol. Process. 2011, 25, 2405–2421. [Google Scholar] [CrossRef]
- Moriasi, D.N.; Arnold, J.G.; Liew, M.W.V.; Bingner, R.L.; Harmel, R.D.; Veith, T.L. Model Evaluation Guidelines for Systematic Quantification of Accuracy in Watershed Simulations. Trans. ASABE 2007, 50, 885–900. [Google Scholar] [CrossRef]
- Mann, H.B. Nonparametric test against trend. Econometrica 1945, 13, 245–259. [Google Scholar] [CrossRef]
- Kendall, M.G. Rank Correlation Methods. Br. J. Psychol. 1990, 25, 86–91. [Google Scholar] [CrossRef]
- Farlie, D.J.G. Rank Correlation Methods. J. R. Stat. Soc. Ser. A 1971, 134, 682. [Google Scholar] [CrossRef]
- Li, B.; Shi, X.; Lian, L.; Chen, Y.; Chen, Z.; Sun, X. Quantifying the effects of climate variability, direct and indirect land use change, and human activities on runoff. J. Hydrol. 2020, 584, 124684. [Google Scholar] [CrossRef]
- Soltani, M.; Laux, P.; Kunstmann, H.; Stan, K.; Sohrabi, M.M.; Molanejad, M.; Sabziparvar, A.A.; Saadatabadi, A.R.; Ranjbar, F.; Rousta, I. Assessment of climate variations in temperature and precipitation extreme events over Iran. Theor. Appl. Climatol. 2015, 126, 775–795. [Google Scholar] [CrossRef]
GCM | Spatial Resolution | Experiment ID | Variant Label | Temporal Resolution | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Relative Humidity | Precipitation | Longwave Radiation | Shortwave Radiation | Wind Speed | Air Temperature | LAI | ||||
MPI-ESM1-2-LR | 192 × 96 | ssp126, ssp245, ssp585 | r1i1p1f1 | 6hrPlev | 3 h | 3 h | 3 h | E3 h | 3 h | Lmon |
CMCC-CM2-SR5 | 288 × 192 | day | ||||||||
CMCC-ESM2 | 288 × 192 | day | ||||||||
EC-Earth3-Veg | 512 × 256 | day |
Parameter Name | Unit | Calibration Value |
---|---|---|
Snow roughness 1 | m | 0.001 |
Snow threshold 2 | °C | −0.5 |
Rain LAI multiplier 2 | NA * | 0.00005 |
Understory monthly LAI 3 | NA | LAI data |
Height 3 | m | 0.4 |
Field capacity (fraction) 1 | NA | 0.23, 0.23, 0.23 |
Vertical conductivity 3 | m/s | 4.3 × 10−5, 4.3 × 10−5, 4.3 × 10−5 |
Number of days since last snow fall 3 | NA | 210 |
Temperature of bottom (top) layer of snow pack 3 | °C | 0 |
Temperature at soil surface 3 | °C | 0 |
Soil temperature for each root zone layer 3 | °C | 0 |
Volumetric soil moisture content for each layer 3 | °C | 0.45, 0.45, 0.45 |
Scenario Combinations | Grassland Area Data | Leaf Area Index Data | Meteorological Data | Description |
---|---|---|---|---|
S1_SSP1–2.6 | Predicted for 2020–2099 | Predicted for 2020–2099 | Predicted for 2020 under SSP1–2.6 | To reflect hydrological responses of the SRYR to LUCC under SSP1–2.6, SSP2–4.5, and SSP5–8.5, respectively |
S1_SSP2–4.5 | Predicted for 2020 under SSP2–4.5 | |||
S1_SSP5–8.5 | Predicted for 2020 under SSP5–8.5 | |||
S2_SSP1–2.6 | Predicted for 2020 | Predicted for 2020 | Predicted for 2020–2099 under SSP1–2.6 | To reflect hydrological responses of the SRYR to climate change under SSP1–2.6, SSP2–4.5, and SSP5–8.5, respectively |
S2_SSP2–4.5 | Predicted for 2020–2099 under SSP2–4.5 | |||
S2_SSP5–8.5 | Predicted for 2020–2099 under SSP5–8.5 | |||
S3_SSP1–2.6 | Predicted for 2020–2099 | Predicted for 2020–2099 | Predicted for 2020–2099 under SSP1–2.6 | To reflect hydrological responses of the SRYR to LUCC and climate change under SSP1–2.6, SSP2–4.5, and SSP5–8.5, respectively |
S3_SSP2–4.5 | Predicted for 2020–2099 under SSP2–4.5 | |||
S3_SSP5–8.5 | Predicted for 2020–2099 under SSP5–8.5 |
Meteorological Elements | Scenarios | 2020 | 2020–2099 | Change Rate | Mann–Kendal Z-Value | p |
---|---|---|---|---|---|---|
Air temperature (°C) | SSP1–2.6 | 1.9 | 2.8 | 44% | 3.09 | 0.002 |
SSP2–4.5 | 1.1 | 3.1 | 180% | 3.34 | 0.0008 | |
SSP5–8.5 | 1.9 | 4.0 | 115% | 3.34 | 0.0008 | |
Longwave radiation (W/m2) | SSP1–2.6 | 380.7 | 382.0 | 0% | 2.85 | 0.004 |
SSP2–4.5 | 373.9 | 383.1 | 2% | 3.34 | 0.0008 | |
SSP5–8.5 | 372.0 | 386.2 | 4% | 3.34 | 0.0008 | |
Shortwave radiation (W/m2) | SSP1–2.6 | 134.7 | 144.2 | 7% | 1.11 | 0.27 |
SSP2–4.5 | 149.1 | 143.8 | −4% | 0.62 | 0.54 | |
SSP5–8.5 | 149.2 | 145.8 | −2% | −0.37 | 0.71 | |
Precipitation (mm) | SSP1–2.6 | 920.7 | 964.4 | 5% | 1.11 | 0.27 |
SSP2–4.5 | 797.1 | 888.0 | 11% | 3.09 | 0.002 | |
SSP5–8.5 | 739.3 | 904.5 | 22% | 3.34 | 0.0008 | |
Relative humidity (%) | SSP1–2.6 | 63.9 | 63.2 | −1% | −1.36 | 0.17 |
SSP2–4.5 | 60.1 | 59.2 | −1% | −1.86 | 0.06 | |
SSP5–8.5 | 56.5 | 59.3 | 5% | −2.85 | 0.004 | |
Wind speed (m/s) | SSP1–2.6 | 2.0 | 1.9 | −1% | −3.34 | 0.0008 |
SSP2–4.5 | 2.3 | 2.1 | −10% | −3.09 | 0.002 | |
SSP5–8.5 | 2.2 | 1.9 | −10% | −3.34 | 0.0008 |
Variable | Scenario Combinations | 2020s | 2030s | 2040s | 2050s | 2060s | 2070s | 2080s | 2090s | Recent Future | Distant Future | Future | Coefficient of Variation |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Period average annual flow (m3/s) | S1_SSP1–2.6 | 947.6 | 932.9 | 925.0 | 910.7 | 900.7 | 892.5 | 892.1 | 884.8 | 929.1 | 892.5 | 910.8 | 0.025 |
S1_SSP2–4.5 | 738.8 | 724.8 | 714.8 | 701.5 | 696.5 | 681.2 | 675.4 | 671.7 | 720.0 | 681.2 | 700.6 | 0.035 | |
S1_SSP5–8.5 | 664.1 | 645.5 | 627.0 | 608.0 | 587.9 | 566.7 | 545.5 | 520.1 | 636.1 | 555.0 | 595.6 | 0.084 | |
S2_SSP1–2.6 | 912.4 | 981.3 | 988.7 | 1043.0 | 1053.1 | 1030.8 | 1042.7 | 1024.0 | 981.4 | 1037.7 | 1009.5 | 0.047 | |
S2_SSP2–4.5 | 777.6 | 777.7 | 826.7 | 854.0 | 871.9 | 912.4 | 927.6 | 915.3 | 809.0 | 906.8 | 857.9 | 0.070 | |
S2_SSP5–8.5 | 729.3 | 780.7 | 805.7 | 810.1 | 854.4 | 910.0 | 914.9 | 1022.2 | 781.4 | 925.4 | 853.4 | 0.109 | |
S3_SSP1–2.6 | 904.9 | 959.0 | 957.9 | 996.1 | 996.4 | 964.2 | 976.6 | 951.0 | 954.5 | 972.1 | 963.3 | 0.030 | |
S3_SSP2–4.5 | 771.5 | 756.2 | 794.3 | 805.3 | 815.4 | 836.0 | 844.3 | 825.4 | 781.8 | 830.3 | 806.1 | 0.038 | |
S3_SSP5–8.5 | 729.3 | 762.0 | 766.1 | 748.4 | 764.6 | 790.3 | 766.7 | 829.7 | 751.4 | 787.8 | 769.6 | 0.039 | |
Flow change rate (%) | S1_SSP1–2.6 | 46.4 | 44.1 | 42.9 | 40.7 | 39.1 | 37.9 | 37.8 | 36.7 | 43.5 | 37.9 | 40.7 | Null |
S1_SSP2–4.5 | 14.1 | 12.0 | 10.4 | 8.4 | 7.6 | 5.2 | 4.3 | 3.8 | 11.2 | 5.2 | 8.2 | ||
S1_SSP5–8.5 | 2.6 | −0.3 | −3.2 | −6.1 | −9.2 | −12.5 | −15.7 | −19.7 | −1.7 | −14.3 | −8.0 | ||
S2_SSP1–2.6 | 40.9 | 51.6 | 52.7 | 61.1 | 62.7 | 59.2 | 61.1 | 58.2 | 51.6 | 60.3 | 55.9 | ||
S2_SSP2–4.5 | 20.1 | 20.1 | 27.7 | 31.9 | 34.7 | 40.9 | 43.3 | 41.4 | 25.0 | 40.1 | 32.5 | ||
S2_SSP5–8.5 | 12.6 | 20.6 | 24.5 | 25.1 | 32.0 | 40.6 | 41.3 | 57.9 | 20.7 | 42.9 | 31.8 | ||
S3_SSP1–2.6 | 39.8 | 48.1 | 48.0 | 53.9 | 53.9 | 48.9 | 50.9 | 46.9 | 47.4 | 50.2 | 48.8 | ||
S3_SSP2–4.5 | 19.2 | 16.8 | 22.7 | 24.4 | 26.0 | 29.1 | 30.4 | 27.5 | 20.8 | 28.3 | 24.5 | ||
S3_SSP5–8.5 | 12.6 | 17.7 | 18.3 | 15.6 | 18.1 | 22.1 | 18.4 | 28.2 | 16.1 | 21.7 | 18.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhan, H.; Zhang, J.; Wang, L.; Yu, D.; Xu, M.; Zhu, Q. Response of Streamflow to Future Land Use and Cover Change and Climate Change in the Source Region of the Yellow River. Water 2024, 16, 1332. https://doi.org/10.3390/w16101332
Zhan H, Zhang J, Wang L, Yu D, Xu M, Zhu Q. Response of Streamflow to Future Land Use and Cover Change and Climate Change in the Source Region of the Yellow River. Water. 2024; 16(10):1332. https://doi.org/10.3390/w16101332
Chicago/Turabian StyleZhan, Hao, Jiang Zhang, Le Wang, Dongxue Yu, Min Xu, and Qiuan Zhu. 2024. "Response of Streamflow to Future Land Use and Cover Change and Climate Change in the Source Region of the Yellow River" Water 16, no. 10: 1332. https://doi.org/10.3390/w16101332
APA StyleZhan, H., Zhang, J., Wang, L., Yu, D., Xu, M., & Zhu, Q. (2024). Response of Streamflow to Future Land Use and Cover Change and Climate Change in the Source Region of the Yellow River. Water, 16(10), 1332. https://doi.org/10.3390/w16101332