Nitrogen, Phosphorus, and Snowmelt Runoff Losses after Application of Dairy Manure with Variable Solids Content
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Weather Conditions
3.2. Snowmelt Runoff and Manure Application Impacts
3.3. Manure Effects on Dissolved Reactive Phosphorus Concentrations and Loads
3.4. Total Phosphorus and Total Solids
3.5. Snowmelt Runoff Losses of Total Nitrogen, Ammonium, and Organic Nitrogen
3.6. Fraction of Applied Nitrogen and Phosphorus Loss as a Function of Manure Solids
3.7. Relationships between Phosphorus, Nitrogen, and Total Solids in Snowmelt Runoff
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Carpenter, S.; Caraco, N.F.; Correll, D.L.; Horwath, R.W.; Sharpley, A.N.; Smith, V.H. Nonpoint pollution of surface waters with phosphorus and nitrogen. Ecol. Appl. 1998, 8, 559–568. [Google Scholar] [CrossRef]
- Parris, K. Impact of agriculture on water pollution in OECD countries: Recent trends and future prospects. Int. J. Water Resour. Dev. 2011, 27, 33–52. [Google Scholar] [CrossRef] [Green Version]
- Good, L.W.; Vadas, P.; Panuska, J.C.; Bonilla, C.A.; Jokela, W.E. Testing the Wisconsin Phosphorus Index with year-round, field-scale runoff monitoring. J. Environ. Qual. 2012, 41, 1730–1740. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Holly, M.; Kleinman, P.; Bryant, R.; Bjorneberg, D.; Rotz, C.; Baker, J.; Boggess, M.; Brauer, D.; Chintala, R.; Feyereisen, G.; et al. Identifying challenges and opportunities for improved nutrient management through the USDA’s Dairy Agroecosystem Working Group. J. Dairy Sci. 2018, 101, 6632–6641. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Srinivasan, M.S.; Bryant, R.B.; Callahan, M.P.; Weld, J.L. Manure management and nutrient loss under winter conditions: A literature review. J. Soil Water Conserv. 2006, 61, 200–209. [Google Scholar]
- Liu, J.; Kleinman, P.J.A.; Aronsson, H.; Flaten, D.; McDowell, R.W.; Bechmann, M.; Beegle, D.B.; Robinson, T.P.; Bryant, R.B.; Liu, H.; et al. A review of regulations and guidelines related to winter manure application. Ambio 2018, 47, 657–670. [Google Scholar] [CrossRef]
- Jokela, W.E.; Casler, M.D. Transport of phosphorus and nitrogen in surface runoff in a corn silage system: Paired watershed methodology and calibration period results. Can. J. Soil Sci. 2001, 91, 479–491. [Google Scholar] [CrossRef]
- Good, L.W.; Carvin, R.; Lamba, J.; Fitzpatrick, F.A. Seasonal variation in sediment and phosphorus yields in four wisconsin in agricultural watersheds. J. Environ. Qual. 2019, 48, 950–958. [Google Scholar] [CrossRef]
- Sherman, J.F.; Young, E.O.; Jokela, W.E.; Casler, M.D.; Coblentz, W.K.; Cavadini, J. Influence of soil and manure management practices on surface runoff phosphorus and nitrogen loss in a corn silage production system: A paired watershed approach. Soil Syst. 2021, 5, 1. [Google Scholar] [CrossRef]
- Reetz, H.F., Jr.; Heffer, P.; Bruulsema, T.W. Chapter 4: 4R Nutrient Stewardship: A Global Framework for Sustainable Fertilizer Management; Drechseler, P., Heffer, H., Magen, R., Mikkelsen, D., Wichelns, Eds.; Managing Water and Fertilizer for Sustainable Agricultural Intensification; International Fertilizer Industry Association (IFA); International Water Management Institute (IWMI); International Plant Nutrition Institute (IPNI); International Potash Institute (IPI): Paris, France, 2015; pp. 65–86. [Google Scholar]
- King, K.W.; Williams, M.R.; LaBarge, G.A.; Smith, D.R.; Reutter, J.M.; Duncan, E.W.; Pease, L.A. Addressing agricultural phosphorus loss in artificially drained landscapes with 4R nutrient management practices. J. Soil Water Conserv. 2018, 73, 35–47. [Google Scholar] [CrossRef]
- Vadas, P.A.; Good, L.W.; Jokela, W.E.; Karthikeyan, K.G.; Arriaga, F.J.; Stock, M. Quantifying the impact of seasonal and short-term manure application decisions on phosphorus loss in surface runoff. J. Environ. Qual. 2017, 46, 1395–1402. [Google Scholar] [CrossRef]
- Bruulsema, T.W.; Peterson, H.M.; Prochnow, L.I. The science of 4R nutrient stewardship for phosphorus management across latitudes. J. Environ. Qual. 2019, 48, 1295–1299. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maguire, R.O.; Kleinman, P.J.; Dell, C.J.; Beegle, D.B.; Brandt, R.C.; McGrath, J.M.; Ketterings, Q.M. Manure application technology in reduced tillage and forage systems: A review. J. Environ. Qual. 2011, 40, 292–301. [Google Scholar] [CrossRef] [PubMed]
- Sherman, J.F.; Young, E.O.; Jokela, W.E.; Cavadini, J. Influence of low disturbance fall liquid dairy manure application on corn silage yield, soil nitrate and rye cover crop growth. J. Environ. Qual. 2020, 49, 1298–1309. [Google Scholar] [CrossRef] [PubMed]
- Costa, D.; Pomeroy, J.W.; Brown, T.; Baulch, H.; Elliott, J.; Macrae, M. Advances in the simulation of nutrient dynamics in cold climate agricultural basins: Developing new nitrogen and phosphorus modules for the Cold Regions Hydrological Modelling Platform. J. Hydrol. 2012, 603, 126901. [Google Scholar] [CrossRef]
- Klausner, S.D.; Zaverman, P.J.; Ellis, D.F. Nitrogen and phosphorus losses from winter disposal of dairy manure. J. Environ Qual. 1976, 5, 46–49. [Google Scholar] [CrossRef]
- Kongoli, C.E.; Bland, W.L. Influence of manure application on surface energy and snow cover: Field experiments. J. Environ. Qual. 2002, 31, 1166–1173. [Google Scholar] [CrossRef]
- Vadas, P.A.; Stock, M.N.; Feyereisen, G.W.; Arriaga, F.J.; Good, L.W.; Karthikeyan, K.G. Temperature and manure placement in a snowpack affect nutrient release from dairy manure during snowmelt. J. Environ. Qual. 2018, 47, 848–855. [Google Scholar] [CrossRef] [Green Version]
- Stock, M.N.; Arriaga, F.J.; Vadas, P.A.; Good, L.W.; Casler, M.D.; Karthikeyan, K.G.; Zopp, Z. Tillage and manure application timing reduce nutrient loads on frozen soil. J. Environ. Qual. 2019, 48, 889–898. [Google Scholar] [CrossRef] [Green Version]
- Komiskey, M.J.; Stuntebeck, T.D.; Frame, D.R.; Madison, F.W. Nutrients and sediment in frozen-ground runoff from no-till fields receiving liquid-dairy and solid-beef manures. J. Soil Water Conserv. 2011, 66, 303–312. [Google Scholar] [CrossRef] [Green Version]
- Vadas, P.A.; Stock, M.N.; Arriaga, F.J.; Good, L.W.; Karthikeyan, K.G.; Zopp, Z.P. Dynamics of measured and simulated dissolved phosphorus in runoff from winter-applied dairy manure. J. Environ. Qual. 2019, 48, 899–906. [Google Scholar] [CrossRef] [PubMed]
- Stock, M.N.; Arriaga, F.J.; Vadas, P.V.; Karthikeyan, K.G. Manure application timing drives energy absorption for snowmelt on an agricultural soil. J. Hydrol. 2019, 569, 51–60. [Google Scholar] [CrossRef]
- Zopp, Z.P.; Ruark, M.D.; Thompson, A.M.; Stuntebeck, T.D.; Cooley, E.; Radatz, A.; Radatz, T. Effects of manure and tillage on edge-of-field phosphorus loss in seasonally frozen landscapes. J. Environ. Qual. 2019, 48, 966–977. [Google Scholar] [CrossRef] [Green Version]
- Prasad, L.R.; Thompson, A.M.; Arriaga, F.J.; Vadas, P.A. Tillage and manure effects on runoff nitrogen and phosphorus losses from frozen soils. J. Environ. Qual. 2022, 51, 978–989. [Google Scholar] [CrossRef] [PubMed]
- Hansen, N.C.; Gupta, S.C.; Moncrief, J.F. Snowmelt runoff, sediment, and phosphorus losses under three different tillage systems. Soil Tillage Res. 2000, 57, 93–100. [Google Scholar] [CrossRef]
- Hoffman, C.C.; Kjaergaard, C.; Uusi-Kämppä, J.; Bruun Hansen, H.C.; Kronvang, B. Phosphorus retention in riparian buffers: Review of their efficiency. J. Environ. Qual. 2009, 38, 1942–1955. [Google Scholar] [CrossRef] [PubMed]
- Owens, L.B.; Bonta, J.V.; Shipitalo, M.J.; Rogers, S. Effects of winter manure application in Ohio on the quality of surface runoff. J. Environ. Qual. 2011, 40, 153–165. [Google Scholar] [CrossRef]
- Vadas, P.A.; Gburek, W.J.; Sharpley, A.N.; Kleinman, P.J.A.; Moore, P.A., Jr.; Cabrera, M.L.; Harmel, R.D. A model for phosphorus transformation and runoff loss for surface-applied manures. J. Environ Qual. 2007, 36, 324–332. [Google Scholar] [CrossRef] [Green Version]
- IUSS Working Group WRB. World Reference Base for Soil Resources. In International Soil Classification System for Naming Soils and Creating Legends for Soil Maps, 4th ed.; International Union of Soil Sciences (IUSS): Vienna, Austria, 2022; 234p. [Google Scholar]
- Peters, J. Recommended Methods of Manure Analysis; University of Wisconsin-Extension: Madison, WI, USA, 2003. [Google Scholar]
- APHA. Standard Methods for the Examination of Water and Wastewater, 19th ed.; American Public Health Association; American Water Works Association; Water Environment Federation: Washington, DC, USA, 1995. [Google Scholar]
- Patton, C.J.; Kryskalla, J.R. Methods of Analysis by the US Geological Survey National Water Quality Laboratory: Evaluation of Alkaline Persulfate Digestion as an Alternative to Kjeldahl Digestion for the Determination of Total and Dissolved Nitrogen and Phosphorus in Water. 2003. Retrieved from Denver. Available online: https://play.google.com/store/books/details?id=zNFE_V7mYYIC&rdid=book-zNFE_V7mYYIC&rdot=1 (accessed on 7 March 2018).
- Diamond, D. Determination of Orthophosphate in Waters by Flow Injection Analysis; QuikChem method 10-115-01-1-P; Lachat Instruments: Loveland, CO, USA, 2007. [Google Scholar]
- Pritzlaff, D. Determination of Nitrate/nitrite in Surface and Wastewaters by Flow Injection Analysis; QuikChem method 10-107-04-1-C; Lachat Instruments: Loveland, CO, USA, 2003. [Google Scholar]
- Prokopy, W. Determination of Ammonia by Flow Injection Analysis; QuikChem method 10-107-06-2-A; Lachat Instruments: Loveland, CO, USA, 2003. [Google Scholar]
- SAS Institute Inc. SAS 9.4 Guide to Software Updates; SAS Institute Inc.: Cary, NC, USA, 2013. [Google Scholar]
- Young, R.A.; Mutchler, C.K. Pollution potential of manure spread on frozen ground. J. Environ. Qual. 1976, 5, 174–179. [Google Scholar] [CrossRef]
- Cade-Menun, B.J.; Bell, G.; Baker-Ismail, S.; Fouli, Y.; Hodder, K.; McMartin, D.W.; Perez-Valdivia, C.; Wu, K. Nutrient loss from Saskatchewan cropland and pasture in spring snowmelt runoff. Can. J. Soil Sci. 2013, 93, 445–458. [Google Scholar] [CrossRef]
- Young, E.O.; Ross, D.S.; Cade-Menun, B.J.; Liu, C.W. Phosphorus speciation in riparian soils: A phosphorus-31 nuclear magnetic resonance spectroscopy and enzyme hydrolysis study. Soil Sci. Soc. Am. J. 2013, 77, 1636–1647. [Google Scholar] [CrossRef]
- Young, E.O.; Ross, D.S.; Jaisi, D.P.; Vidon, P.G. Phosphorus transport along the cropland-riparian-stream continuum in cold climate agroecosystems: A review. Soil Syst. 2021, 5, 15. [Google Scholar] [CrossRef]
Manure Composition | Nutrients Applied | ||||
---|---|---|---|---|---|
Treatment | Solids Content | TN | TP | TN | TP |
-----------------%----------------- | ------kg/ha------- | ||||
Arlington, Wisconsin 2017 and 2018 | |||||
High | 14.9 | 2.89 | 1.01 | 141 | 49.3 |
Medium | 7.5 | - | - | 70.4 | 24.7 |
Low | 3.7 | - | - | 35.2 | 12.3 |
St. Paul, Minnesota 2018 | |||||
High | 19.7 | 2.14 | 1.35 | 138 | 87.1 |
Low | 2.9 | 1.62 | 1.81 | 15.3 | 17.2 |
St. Paul, Minnesota 2019 | |||||
High | 14.6 | 2.65 | 1.04 | 130 | 51.1 |
Low | 3.0 | 2.80 | 1.07 | 27.5 | 10.5 |
Marshfield, Wisconsin 2019 | |||||
High | 15.4 | 3.00 | 1.11 | 129 | 47.8 |
Medium | 8.0 | 2.90 | 1.02 | 64.9 | 22.8 |
Low | 5.5 | 2.70 | 1.02 | 41.5 | 15.7 |
Variable | Control | Low | Medium | High |
---|---|---|---|---|
Arlington Station, Wisconsin (2017) | ||||
DRP | 0.23 a | 3.8 b | 4.9 bc | 2.9 b |
Arlington Station, Wisconsin (2018) | ||||
DRP | 0.59 a | 2.1 b | 3.7 c | 4.8 d |
Ammonium-N | 0.56 a | 1.7 a | 2.6 b | 3.3 b |
University of Minnesota (2018) | ||||
DRP | 0.48 a | 4.1 b | --- | 4.2 b |
Total P | 0.61 a | 6.3 b | --- | 8.1 b |
PUP | 0.15 a | 2.2 b | --- | 3.8 b |
TS | 166 a | 318 b | --- | 788 c |
Ammonium-N | 0.81 a | 6.0 b | --- | 21.0 c |
Total N | 2.5 a | 11.9 b | --- | 35.6 c |
Organic-N | 1.3 | 1.1 | --- | 4.8 |
University of Minnesota (2019) | ||||
DRP | 0.39 a | 0.82 b | --- | 3.6 c |
Total P | 0.79 a | 1.4 a | --- | 8.1 b |
PUP | 0.36 a | 0.61 a | --- | 1.7 b |
TS | 279 a | 447 b | --- | 362 ab |
Ammonium-N | 0.71 a | 1.4 a | --- | 5.6 b |
Total N | 2.4 a | 5.3 b | --- | 10.6 c |
Organic-N | 1.1 a | 3.1 b | --- | 4.2 b |
Marshfield Station, Wisconsin (2019) | ||||
DRP | 0.62 a | 0.9 a | 1.4 a | 3.0 b |
Total P | 1.7 a | 2.2 a | 3.2 b | 6.3 b |
PUP | 1.1 a | 1.3 a | 1.8 a | 3.3 b |
TS | 2196 a | 859 b | 487 b | 804 b |
Ammonium-N | 0.63 a | 1.1 b | 1.6 b | 3.0 b |
Total N | 5.6 a | 7.6 a | 9.2 a | 21.2 b |
Organic-N | 3.9 | 5.2 | 6.2 | 16.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Young, E.; Wilson, M.; Sherman, J.; Vadas, P.; Arriaga, F.; Feyereisen, G. Nitrogen, Phosphorus, and Snowmelt Runoff Losses after Application of Dairy Manure with Variable Solids Content. Water 2022, 14, 3745. https://doi.org/10.3390/w14223745
Young E, Wilson M, Sherman J, Vadas P, Arriaga F, Feyereisen G. Nitrogen, Phosphorus, and Snowmelt Runoff Losses after Application of Dairy Manure with Variable Solids Content. Water. 2022; 14(22):3745. https://doi.org/10.3390/w14223745
Chicago/Turabian StyleYoung, Eric, Melissa Wilson, Jessica Sherman, Peter Vadas, Francisco Arriaga, and Gary Feyereisen. 2022. "Nitrogen, Phosphorus, and Snowmelt Runoff Losses after Application of Dairy Manure with Variable Solids Content" Water 14, no. 22: 3745. https://doi.org/10.3390/w14223745