Improving the Treatment Performance of Low Impact Development Practices—Comparison of Sand and Bioretention Soil Mixtures Using Column Experiments
Abstract
:1. Introduction
2. Materials and Methods
2.1. Column and Media Specification
2.1.1. Column Experiments—Phase I
2.1.2. Column Experiments—Phase II
2.1.3. Column Experiments—Phase III
2.2. Synthetic Stormwater
2.3. Experimental Procedure
2.4. Water Quality Analysis
2.5. Statistical Analysis
3. Results and Discussion
3.1. Media Physical and Chemical Properties
3.2. Water Quality Analysis
3.2.1. Column Experiments—Phase I
3.2.2. Column Experiments—Phase II
3.2.3. Column Experiments—Phase III
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- US EPA. Reducing Stormwater Costs through Low Impact Development (LID) Strategies and Practices; United States Environmental Protection Agency, Nonpoint Source Control Branch (4503T): Washington, DC, USA, 2007; p. 37. [Google Scholar]
- Prince George’s County. Low Impact Development Design Strategies an Integrated Design Approach; Prince George’s County, Maryland, Department of Environmental Resource, Programs and Planning Division: Largo, MD, USA, 1999. [Google Scholar]
- Barrett, M.E. Performance, Cost, and Maintenance Requirements of Austin Sand Filters. J. Water Resour. Plan. Manag. 2003, 129, 234–242. [Google Scholar] [CrossRef]
- Barrett, M.E. Complying with the Edwards Aquifer Rules; Texas Commission on Environmental Quality (TCEQ): Austin, TX, USA, 2005; p. 415. [Google Scholar]
- Ahiablame, L.M.; Engel, B.A.; Chaubey, I. Effectiveness of Low Impact Development Practices: Literature Review and Suggestions for Future Research. Water Air Soil Pollut. 2012, 223, 4253–4273. [Google Scholar] [CrossRef]
- Eckart, K.; McPhee, Z.; Bolisetti, T. Performance and implementation of low impact development—A review. Sci. Total Environ. 2017, 607-608, 413–432. [Google Scholar] [CrossRef]
- Wang, R.; Zhang, X.; Li, M.-H. Predicting bioretention pollutant removal efficiency with design features: A data-driven approach. J. Environ. Manag. 2019, 242, 403–414. [Google Scholar] [CrossRef] [PubMed]
- Shahrokh Hamedani, A.S.; Bazilio, A.; Cerda, C.; Manjarres, A.; Hall, A.; Shipley, H.; Giacomoni, M. Assessing the Performance of Bioretention and Sand Filter Media Using Columns and Synthetic Stormwater. In Proceedings of the World Environmental and Water Resources Congress 2019: Water, Wastewater, and Stormwater, Urban Water Resources, and Municipal Water Infrastructure, Pittsburgh, PA, USA, 19–23 May 2019; p. 14. [Google Scholar]
- Zarezadeh, V.; Lung, T.; Dorman, T.; Shipley, H.J.; Giacomoni, M. Assessing the performance of sand filter basins in treating urban stormwater runoff. Environ. Monit. Assess. 2018, 190, 697. [Google Scholar] [CrossRef] [PubMed]
- Davis, A.P.; Traver, R.G.; Hunt, W.F. Improving Urban Stormwater Quality: Applying Fundamental Principles. J. Contemp. Water Res. Educ. 2010, 146, 3–10. [Google Scholar] [CrossRef]
- Dorman, T.; Ferry, M.; Wright, J.; Wardynski, B.; Smith, J.; Tucker, B.; Riverson, J.; Teague, A.; Bishop, K. San Antonio River Basin Low Impact Development Technical Guidance Manual; San Antonio River Authority: San Antonio, TX, USA, 2013. [Google Scholar]
- Hsieh, C.-H.; Davis, A. Multiple-event study of bioretention for treatment of urban storm water runoff. Water Sci. Technol. 2005, 51, 177–181. [Google Scholar] [CrossRef]
- Scaccia, N.; Vaz-Moreira, I.; Manaia, C.M. Persistence of wastewater antibiotic resistant bacteria and their genes in human fecal material. FEMS Microbiol. Ecol. 2020, 96, 96. [Google Scholar] [CrossRef] [PubMed]
- Hsieh, C.-H.; Davis, A.P. Evaluation and Optimization of Bioretention Media for Treatment of Urban Storm Water Runoff. J. Environ. Eng. 2005, 131, 1521–1531. [Google Scholar] [CrossRef] [Green Version]
- Baum, P.; Kuch, B.; Dittmer, U. Adsorption of Metals to Particles in Urban Stormwater Runoff—Does Size Really Matter? Water 2021, 13, 309. [Google Scholar] [CrossRef]
- Blecken, G.-T.; Zinger, Y.; Deletić, A.; Fletcher, T.D.; Viklander, M. Impact of a submerged zone and a carbon source on heavy metal removal in stormwater biofilters. Ecol. Eng. 2009, 35, 769–778. [Google Scholar] [CrossRef]
- Sun, X.; Davis, A.P. Heavy metal fates in laboratory bioretention systems. Chemosphere 2007, 66, 1601–1609. [Google Scholar] [CrossRef]
- Barrett, M.E.; Limouzin, M.; Lawler, D.F. Effects of Media and Plant Selection on Biofiltration Performance. J. Environ. Eng. 2013, 139, 462–470. [Google Scholar] [CrossRef]
- DelVecchio, T.; Welker, A.; Wadzuk, B.M.; Dunn, C.N.; Van Weele, B. Field and Laboratory Studies of Nutrient Removal in Different Soil Types for Vegetated Stormwater Control Measures. In Proceedings of the World Environmental and Water Resources Congress 2017, Sacramento, CA, USA, 21–25 May 2017; pp. 345–356. [Google Scholar]
- Limouzin, M.; Lawler, D.F.; Barrett, M.E. Performance Comparison of Stormwater Biofiltration Designs; Center for Research in Water Resources, University of Texas at Austin: Austin, TX, USA, 2011. [Google Scholar]
- Guo, H.; Lim, F.; Zhang, Y.; Lee, L.; Hu, J.; Ong, S.; Yau, W.; Ong, G. Soil column studies on the performance evaluation of engineered soil mixes for bioretention systems. Desalination Water Treat. 2014, 54, 3661–3667. [Google Scholar] [CrossRef]
- Shrestha, P.; Salzl, M.T.; Jimenez, I.J.; Pradhan, N.; Hay, M.; Wallace, H.R.; Abrahamson, J.N.; Small, G.E. Efficacy of Spent Lime as a Soil Amendment for Nutrient Retention in Bioretention Green Stormwater Infrastructure. Water 2019, 11, 1575. [Google Scholar] [CrossRef] [Green Version]
- Tian, J.; Jin, J.; Chiu, P.C.; Cha, D.K.; Guo, M.; Imhoff, P.T. A pilot-scale, bi-layer bioretention system with biochar and zero-valent iron for enhanced nitrate removal from stormwater. Water Res. 2019, 148, 378–387. [Google Scholar] [CrossRef]
- Ulrich, B.A.; Loehnert, M.; Higgins, C.P. Improved contaminant removal in vegetated stormwater biofilters amended with biochar. Environ. Sci. Water Res. Technol. 2017, 3, 726–734. [Google Scholar] [CrossRef]
- Wan, Z.; Li, T.; Shi, Z. A layered bioretention system for inhibiting nitrate and organic matters leaching. Ecol. Eng. 2017, 107, 233–238. [Google Scholar] [CrossRef]
- Yang, F.; Fu, D.; Liu, S.; Zevenbergen, C.; Singh, R.P. Hydrologic and Pollutant Removal Performance of Media Layers in Bioretention. Water 2020, 12, 921. [Google Scholar] [CrossRef] [Green Version]
- CWC. Evaluation of Crushed Recycled Glass as a Filtration Medium in Slow Sand Filtration; Recycling Technology Assistance Partnership (ReTAP) A program of the Clean Washington Center (CWC), a division of the Pacific Northwest Economic Region; Gray & Osborne, Inc.: Seattle, WA, USA, 1995; p. 42. [Google Scholar]
- Elliot, R.W. Evaluation of the use of crushed recycled glass as a filter medium. Water Eng. Manag. 2001, 148, 17–20. [Google Scholar]
- Horan, N.; Lowe, M. Full-scale trials of recycled glass as tertiary filter medium for wastewater treatment. Water Res. 2007, 41, 253–259. [Google Scholar] [CrossRef] [PubMed]
- Rutledge, S.O.; Gagnon, G.A. Comparing crushed recycled glass to silica sand for dual media filtration. J. Environ. Eng. Sci. 2002, 1, 349–358. [Google Scholar] [CrossRef] [Green Version]
- Mateus, D.M.; Vaz, M.M.; Pinho, H.J. Fragmented limestone wastes as a constructed wetland substrate for phosphorus removal. Ecol. Eng. 2012, 41, 65–69. [Google Scholar] [CrossRef]
- Oates, J.A.H. Lime and Limestone: Chemistry and Technology, Production and Uses; Wiley-VCH: Weinheim, Germany, 1998; ISBN 978-3-527-29527-2. [Google Scholar]
- Aziz, H.; Othman, N.; Yusuff, M.; Basri, D.; Ashaari, F.; Adlan, M.; Othman, F.; Johari, M.; Perwira, M. Removal of copper from water using limestone filtration technique: Determination of mechanism of removal. Environ. Int. 2001, 26, 395–399. [Google Scholar] [CrossRef]
- Aziz, H.A.; Adlan, M.N.; Ariffin, K.S. Heavy metals (Cd, Pb, Zn, Ni, Cu and Cr(III)) removal from water in Malaysia: Post treatment by high quality limestone. Bioresour. Technol. 2008, 99, 1578–1583. [Google Scholar] [CrossRef] [PubMed]
- ASTM C33/C33M-18 Standard Specification for Concrete Aggregates; ASTM International: West Conshohocken, PA, USA, 2018.
- ASTM C136/C136M-14 Test Method for Sieve Analysis of Fine and Coarse Aggregates; ASTM International: West Conshohocken, PA, USA, 2014.
- ASTM F1815-11 Test Methods for Saturated Hydraulic Conductivity, Water Retention, Porosity, and Bulk Density of Athletic Field Rootzones; ASTM International: West Conshohocken, PA, USA, 2011.
- ASTM C20-00(2015) Test Methods for Apparent Porosity, Water Absorption, Apparent Specific Gravity, and Bulk Density of Burned Refractory Brick and Shapes by Boiling Water; STM International: West Conshohocken, PA, USA, 2015.
- Li, M.-H.; Sung, C.Y.; Kim, M.H. Bioretention for Stormwater Quality Improvement in Texas: Pilot Experiments; Texas Transportation Institute, The Texas A&M University System: College Station, TX, USA, 2010; p. 56. [Google Scholar]
- APHA; AWWA; WEF. Standard Methods for the Examination of Water and Wastewater, 22nd ed.; Rice, E.W., Baird, R.B., Eaton, A.D., Clesceri, L.S., Eds.; American Public Health Association: Washington, DC, USA, 2012; ISBN 978-0-87553-013-0. [Google Scholar]
- Li, H.; Davis, A.P. Urban Particle Capture in Bioretention Media. II: Theory and Model Development. J. Environ. Eng. 2008, 134, 419–432. [Google Scholar] [CrossRef]
Pollutant | Stock Solution (mL) | Chemicals (Salts) | |
---|---|---|---|
TSS | 100 | -- | Solids (<150 µm) |
Nitrate (NOX) as N | 0.3 | 1.89 | Potassium nitrate (KNO3) |
Total Kjeldhal Nitrogen (TKN)(Org N + NH3-N) | 1.85 (0.85 + 1.0) | 189.27 | Nicotinic acid (C6H5NO2) + Ammonium chloride (NH4Cl) |
Total Phosphorus (TP) | 0.2 | 1.89 | Mono-potassium phosphate (KH2PO4) |
Total Copper (TCu) | 0.02 | 1.89 | Copper (II) sulfate (CuSO4) |
Total Zinc (TZn) | 0.13 | 1.89 | Zinc chloride (ZnCl2) |
Total Lead (TPb) | 0.08 | 18.93 | Lead nitrate (PbNO3) |
Buffer (M) | 0.05 M | 0.189 | Sodium carbonate anhydrous (Na2CO3) |
Media [(No#) Name] | Size Distribution a | Organic Matter | Hydraulic Conductivity | Permeability | pH | Total P | Total N | Total Cu | Total Pb | Total Zn | |
---|---|---|---|---|---|---|---|---|---|---|---|
270 | 1/4 | (%) | mm/h | mm2 | mg/kg | mg/kg | µg/kg | µg/kg | µg/kg | ||
(1) Regular Sand | 0 | 100 | 0 | 375 | 1.0 × 10−4 | 7.7 | 0.8 | 14.4 | 42.0 | 30.8 | 581 |
(2) Man.Sand | 0 | 100 | 0 | 1096 | 3.0 × 10−4 | 9.0 | 2.6 | 11.4 | 44.8 | 16.4 | 401 |
(3) Biofilter532 | 23.9 | 100 | 5.8 | 61 | 1.6 × 10−5 | 8.3 | 56.6 | 59.4 | 299 | 23.2 | 745 |
(4) R.G. + Biofilter | 1 | 96 | 2.9 | 616 | 1.7 × 10−4 | 8.3 | 35.4 | 27 | 187 | 14.4 | 466 |
(5) Lime-Mix | 22.0 | 100 | 5.0 | 61 | 1.6 × 10−5 | 9.4 | 9.8 | 43.4 | 117 | 7.8 | 419 |
(6) Blend#1 | 38.0 | 100 | 1.4 | 35 | 9.2 × 10−6 | 8.9 | 6.8 | 29 | 57.6 | 10.4 | 458 |
(7) Blend#2 | 38.0 | 100 | 1.4 | 34 | 9.0 × 10−6 | — | — | — | — | — | — |
(8) Biofilter433 | 72.3 | 100 | 3.9 | 19 | 5.1 × 10−6 | 8.4 | 23.1 | 81.6 | 190 | 21.4 | 602 |
(9) Biofilter433MS | 30.9 | 100 | 3.7 | 344 | 8.9 × 10−5 | 8.6 | 23.6 | 88.8 | 160 | 17.6 | 382 |
Water Quality Parameter | Removal Efficiency (%) | ||||||||
---|---|---|---|---|---|---|---|---|---|
Sand | Man.Sand | Biofilter 532 | R.G. + Biofilter | Lime-Mix | Blend#1 | Blend#2 | Biofilter 433MS | Biofilter 433 | |
TSS | 91.6 | 91.6 | 84.6 | 85.2 | 94.9 | 87.3 | 86.0 | 75.7 | 86.6 |
Orthophosphate | 49.8 | 93.1 | -- | −22.7 | 77.4 | −32.9 | 89.1 | −583 | −266 |
Total Phosphorus | 46.1 | 70.3 | −80.8 | −69.4 | 53.2 | −20.5 | 65.2 | −380 | −178 |
Nitrate | −108 | −35.4 | -- | -- | 4.0 | −7.2 | −3.7 | −12.7 | 59.3 |
Total Nitrogen | −6.25 | −32.9 | 12.3 | −22.2 | 29.7 | −11.8 | 1.0 | −11.3 | 13.3 |
Dissolved Lead | 98.9 | 99.9 | 100 | 77.4 | 95.9 | 100 | 100 | 95.0 | 99.8 |
Total Lead | 99.1 | 99.8 | 99.3 | 96.5 | -- | 100 | 100 | 99.4 | 98.5 |
Dissolved Copper | 20.3 | 96.6 | −461 | −77.3 | 10.0 | −71.5 | −10.1 | −28.4 | −162 |
Total Copper | 69.5 | 93.8 | −102 | 29.1 | 69.2 | 63.6 | 79.2 | 64.4 | 75.9 |
Dissolved Zinc | 93.2 | 95.9 | 64.9 | 90.2 | 89.7 | 92.1 | 98.3 | 93.8 | 87.0 |
Total Zinc (µg/L) | 89.0 | 87.9 | 85.7 | 88.5 | -- | 94.6 | 87.8 | 91.7 | 96.2 |
Water Quality Parameter | Flow Weighted Mean Concentration (FWMC) | ||||||||
---|---|---|---|---|---|---|---|---|---|
Sand | Man.Sand | Biofilter 532 | R.G. + Biofilter | Lime-Mix | Blend#1 | Blend#2 | Biofilter 433MS | Biofilter 433 | |
TSS (mg/L) | 2.22 | 2.19 | 12.06 | 8.87 | 2.15 | 14.2 | 7.47 | 21.6 | 13.3 |
Orthophosphate (mg/L P) | 0.09 | 0.01 | -- | 0.86 | 0.03 | 0.14 | 0.02 | 1.03 | 0.64 |
Total Phosphorus (mg/L P) | 0.53 | 0.32 | 1.38 | 5.05 | 0.33 | 0.65 | 0.28 | 3.41 | 2.21 |
Nitrate (mg/L N) | 2.24 | 0.86 | -- | -- | 0.41 | 0.55 | 0.69 | 0.89 | 0.30 |
Total Nitrogen (mg/L N) | 1.01 | 1.86 | 0.87 | 3.32 | 1.47 | 1.95 | 1.67 | 1.35 | 1.45 |
Dissolved Lead (µg/L) | 0.36 | 0.08 | 0 | 1.14 | 0 | 0 | 0 | 2.50 | 0.14 |
Total Lead (µg/L) | 1.12 | 0.13 | 0.41 | 4.17 | -- | 0 | 0 | 2.01 | 1.44 |
Dissolved Copper (µg/L) | 5.93 | 0.62 | 41.5 | 19.6 | 6.94 | 9.82 | 7.41 | 15.6 | 9.28 |
Total Copper (µg/L) | 9.47 | 1.19 | 51.5 | 43.9 | 4.46 | 12.6 | 7.46 | 19.4 | 24.8 |
Dissolved Zinc (µg/L) | 4.37 | 0.49 | 8.76 | 12.1 | 20.3 | 10.3 | 1.25 | 9.88 | 6.89 |
Total Zinc (µg/L) | 15.8 | 5.74 | 15.0 | 14.5 | -- | 21.7 | 29.8 | 26.9 | 12.3 |
Water Quality Parameter | Removal Efficiency (%) | |||||||
---|---|---|---|---|---|---|---|---|
Phase III with Plants | Phase II | |||||||
Blend#1 | Biofilter433 | No Plants | ||||||
Sea Oats | Frogfruit | Muhly | Sea Oats | Frogfruit | Muhly | Blend#1 | Biofilter433 | |
TSS | 55.2 | 34.6 | 6.0 | 55.0 | 19.9 | 15.6 | 87.3 | 86.6 |
Orthophosphate | 87.9 | 82.8 | 80.8 | −275 | −420 | −355 | −32.9 | −266 |
Total Phosphorus | 64.7 | 59.0 | 59.2 | −202 | −289 | −255 | −20.5 | −179 |
Nitrate | 46.1 | 55.7 | 35.0 | 72.9 | 64.3 | 65.6 | −7.2 | 59.3 |
Total Nitrogen | 5.5 | −2.9 | −7.3 | −0.4 | −10.6 | −4.7 | −11.8 | 13.3 |
Dissolved Lead | 84.3 | 100 | 98.5 | 71.3 | 100 | 68.5 | 100 | 99.8 |
Total Lead | 98.2 | 97.9 | 98.8 | 99.2 | 97.7 | 97.7 | 100 | 98.5 |
Dissolved Copper | 44.0 | 64.6 | 63.8 | −17.8 | −169 | −39.1 | −71.5 | −162 |
Total Copper | 47.4 | 77.0 | 73.2 | 68.5 | 73.4 | 71.1 | 63.6 | 75.9 |
Dissolved Zinc | 86.8 | 96.3 | 94.7 | 88.7 | 89.8 | 91.5 | 92.1 | 87.0 |
Total Zinc | 95.7 | 95.6 | 90.1 | 93.9 | 86.0 | 87.9 | 94.6 | 96.2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shahrokh Hamedani, A.; Bazilio, A.; Soleimanifar, H.; Shipley, H.; Giacomoni, M. Improving the Treatment Performance of Low Impact Development Practices—Comparison of Sand and Bioretention Soil Mixtures Using Column Experiments. Water 2021, 13, 1210. https://doi.org/10.3390/w13091210
Shahrokh Hamedani A, Bazilio A, Soleimanifar H, Shipley H, Giacomoni M. Improving the Treatment Performance of Low Impact Development Practices—Comparison of Sand and Bioretention Soil Mixtures Using Column Experiments. Water. 2021; 13(9):1210. https://doi.org/10.3390/w13091210
Chicago/Turabian StyleShahrokh Hamedani, Abtin, Arianne Bazilio, Hanieh Soleimanifar, Heather Shipley, and Marcio Giacomoni. 2021. "Improving the Treatment Performance of Low Impact Development Practices—Comparison of Sand and Bioretention Soil Mixtures Using Column Experiments" Water 13, no. 9: 1210. https://doi.org/10.3390/w13091210