Occurrence of Pharmaceutical Compounds in Groundwater from the Gran Canaria Island (Spain)
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sampling Methodology
2.3. Reagents, Instrumentation, and Analytical Procedure
3. Results
3.1. Initial Sampling Campaign Results
3.2. The 1-Year Monitoring Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Kookana, R.S.; Williams, M.; Boxall, A.B.A.; Larsson, D.G.J.; Gaw, S.; Choi, K.; Yamamoto, H.; Thatikonda, S.; Zhu, Y.-G.; Carriquiriborde, P. Potential ecological footprints of active pharmaceutical ingredients: An examination of risk factors in low-, middle- and high-income countries. Philos. Trans. R. Soc. B Biol. Sci. 2014, 369. [Google Scholar] [CrossRef] [PubMed]
- Martínez Bueno, M.J.; Agüera, A.; Gómez, M.J.; Hernando, M.D.; García-Reyes, J.F.; Fernández-Alba, A.R. Application of liquid chromatography/quadrupole-linear ion trap mass spectrometry and time-of-flight mass spectrometry to the determination of pharmaceuticals and related contaminants in wastewater. Anal. Chem. 2007, 79, 9372–9384. [Google Scholar] [CrossRef] [PubMed]
- Lapworth, D.J.; Baran, N.; Stuart, M.E.; Ward, R.S. Emerging organic contaminants in groundwater: A review of sources, fate and occurrence. Environ. Pollut. 2012, 163, 287–303. [Google Scholar] [CrossRef] [PubMed]
- Estevez, E.; Hernandez-Moreno, J.M.; Fernandez-Vera, J.R.; Palacios-Diaz, M.P. Ibuprofen adsorption in four agricultural volcanic soils. Sci. Total Environ. 2014, 468–469, 406–414. [Google Scholar] [CrossRef] [PubMed]
- Estevez, E.; Cabrera, M.D.C.; Fernández-Vera, J.R.; Molina-Díaz, A.; Robles-Molina, J.; Palacios-Díaz, M.D.P. Monitoring priority substances, other organic contaminants and heavy metals in a volcanic aquifer from different sources and hydrological processes. Sci. Total Environ. 2016, 551–552, 186–196. [Google Scholar] [CrossRef] [PubMed]
- Palacios, M.P.; Mendoza-Grimon, V.; Fernández, F.; Fernandez-Vera, J.R.; Hernandez-Moreno, J.M. Sustainable reclaimed water management by subsurface drip irrigation system: A study case for forage production. Water Pract. Technol. 2008, 3. [Google Scholar] [CrossRef]
- Tiehm, A.; Schmidt, N.; Lipp, P.; Zawadsky, C.; Marei, A.; Seder, N.; Ghanem, M.; Paris, S.; Zemann, M.; Wolf, L. Consideration of emerging pollutants in groundwater-based reuse concepts. Water Sci. Technol. 2012, 66, 1270–1276. [Google Scholar] [CrossRef][Green Version]
- Zemann, M.; Majewsky, M.; Wolf, L. Accumulation of pharmaceuticals in groundwater under arid climate conditions—Results from unsaturated column experiments. Chemosphere 2016, 154, 463–471. [Google Scholar] [CrossRef]
- Estévez, E.; Cabrera, M.D.C.; Molina-Díaz, A.; Robles-Molina, J.; Palacios-Díaz, M.D.P. Screening of emerging contaminants and priority substances (2008/105/EC) in reclaimed water for irrigation and groundwater in a volcanic aquifer (Gran Canaria, Canary Islands, Spain). Sci. Total Environ. 2012, 433, 538–546. [Google Scholar] [CrossRef]
- Bloetscher, F.; Pleitez, F.; Hart, J.; Stambaugh, D.; Cooper, J.; Kennedy, K.; Burack, L.S. Comparing contaminant removal costs for aquifer recharge with wastewater with water supply benefits. J. Am. Water Resour. Assoc. 2014, 50, 324–333. [Google Scholar] [CrossRef]
- Boletín Oficial del Estado, Real Decreto 1620/2007, Las Palmas de Gran Canaria, Spain, 7 de Diciembre. Available online: https://www.boe.es/eli/es/rd/2007/12/07/1620 (accessed on 1 October 2020).
- Durán-Álvarez, J.C.; Sánchez, Y.; Prado, B.; Jiménez, B. The transport of three emerging pollutants through an agricultural soil irrigated with untreated wastewater. J. Water Reuse Desalin. 2014, 4, 9–17. [Google Scholar] [CrossRef][Green Version]
- Wode, F.; van Baar, P.; Dünnbier, U.; Hecht, F.; Taute, T.; Jekel, M.; Reemtsma, T. Search for over 2000 current and legacy micropollutants on a wastewater infiltration site with a UPLC-high resolution MS target screening method. Water Res. 2015, 69, 274–283. [Google Scholar] [CrossRef] [PubMed]
- Cabeza, Y.; Candela, L.; Ronen, D.; Teijon, G. Monitoring the occurrence of emerging contaminants in treated wastewater and groundwater between 2008 and 2010. The Baix Llobregat (Barcelona, Spain). J. Hazard. Mater. 2012, 239–240, 32–39. [Google Scholar] [CrossRef] [PubMed]
- McEachran, A.D.; Shea, D.; Nichols, E.G. Pharmaceuticals in a temperate forest-water reuse system. Sci. Total Environ. 2017, 581–582, 705–714. [Google Scholar] [CrossRef] [PubMed]
- Rozman, D.; Hrkal, Z.; Váňa, M.; Vymazal, J.; Boukalová, Z. Occurrence of pharmaceuticals in wastewater and their interaction with shallow aquifers: A case study of Horní Beřkovice, Czech Republic. Water 2017, 9, 218. [Google Scholar] [CrossRef]
- Kibuye, F.A.; Gall, H.E.; Elkin, K.R.; Ayers, B.; Veith, T.L.; Miller, M.; Jacob, S.; Hayden, K.R.; Watson, J.E.; Elliott, H.A. Fate of pharmaceuticals in a spray-irrigation system: From wastewater to groundwater. Sci. Total Environ. 2019, 654, 197–208. [Google Scholar] [CrossRef] [PubMed]
- Lyu, S.; Chen, W.; Qian, J.; Wen, X.; Xu, J. Prioritizing environmental risks of pharmaceuticals and personal care products in reclaimed water on urban green space in Beijing. Sci. Total Environ. 2019, 697. [Google Scholar] [CrossRef]
- Turner, R.D.R.; Warne, M.S.J.; Dawes, L.A.; Thompson, K.; Will, G.D. Greywater irrigation as a source of organic micro-pollutants to shallow groundwater and nearby surface water. Sci. Total Environ. 2019, 669, 570–578. [Google Scholar] [CrossRef]
- Moreau, M.; Hadfield, J.; Hughey, J.; Sanders, F.; Lapworth, D.J.; White, D.; Civil, W. A baseline assessment of emerging organic contaminants in New Zealand groundwater. Sci. Total Environ. 2019, 686, 425–439. [Google Scholar] [CrossRef]
- Close, M.E.; Humphries, B.; Northcott, G. Outcomes of the first combined national survey of pesticides and emerging organic contaminants (EOCs) in groundwater in New Zealand 2018. Sci. Total Environ. 2021, 754. [Google Scholar] [CrossRef]
- Cruz-Fuentes, T.; Heredia, J.; Cabrera, M.C.; Custodio, E. Behaviour of a small sedimentary volcanic aquifer receiving irrigation return flows: La Aldea, Gran Canaria, Canary Islands (Spain)|Fonctionnement d’un petit aquifère volcano-sédimentaire bénéficiant de l’excédent d’eaux d’irrigation: La Aldea, Grande, C. Hydrogeol. J. 2014, 22, 865–882. [Google Scholar] [CrossRef]
- Cruz-Fuentes, T.; Cabrera, M.D.C.; Heredia, J.; Custodio, E. Groundwater salinity and hydrochemical processes in the volcano-sedimentary aquifer of La Aldea, Gran Canaria, Canary Islands, Spain. Sci. Total Environ. 2014, 484, 154–166. [Google Scholar] [CrossRef] [PubMed]
- Hansen, A.; Moreno, C. El Gran Volcán. La Caldera y el Pico de Bandama; Cabildo de Gran Canaria: Las Palmas de Gran Canaria, Spain, 2008; p. 359. [Google Scholar]
- Ministerio de Agricultura, Pesca y Alimentación, Las Palmas de Gran Canaria, Spain. Available online: http://eportal.mapa.gob.es/websiar/ResultadoConsultaDatos.aspx (accessed on 1 September 2020).
- Cabrera, M.C.; Palacios, M.P.; Estévez, E.; Cruz, T.; Hernández-Moreno, J.M.; Fernández-Vera, J.R. The reuse of regenerated water for irrigation of a golf course: Evolution geochemistry and probable affection to a volcanic aquifer (Canary Islands)|La reutilización de aguas regeneradas para riego de un campo de golf: Evolución geoquímica y probable af. Bol. Geol. Min. 2009, 120, 543–552. [Google Scholar]
- Estevez, E.; Cabrera, M.C.; Fernandez-Vera, J.R.; Hernandez-Moreno, J.M.; Mendoza-Grimon, V.; Palacios-Diaz, M.P. Twenty-five years using reclaimed water to irrigate a golf course in gran canaria|Veinticinco años regando con agua depurada un campo de golf en gran canaria. Spanish J. Agric. Res. 2010, 8. [Google Scholar] [CrossRef]
- Chang, P.-H.; Jiang, W.-T.; Sarkar, B.; Wang, W.; Li, Z. The triple mechanisms of atenolol adsorption on ca-montmorillonite: Implication in pharmaceutical wastewater treatment. Materials 2019, 12, 2858. [Google Scholar] [CrossRef]
- Kodesova, R.; Kocarek, M.; Klement, A.; Fer, M.; Golovko, O.; Grabic, R.; Jaksik, O. Impact of soil properties on selected pharmaceuticals adsorption in soils. In Geophysical Research Abstracts; EGU2014-6736-1; EGU General Assembly: Vienna, Austria, 2014; Volume 16. [Google Scholar]
- Monteiro, S.C.; Boxall, A.B.A. Factors affecting the degradation of pharmaceuticals in agricultural soils. Environ. Toxicol. Chem. 2009, 28, 2546–2554. [Google Scholar] [CrossRef]
- Flores-Mangual, M.L.; Hernández-Maldonado, A.J.; Ortíz-Martínez, K.; Quiñones, N.P. Emerging contaminants uptake by an Ultisol and a Vertisol from Puerto Rico. Agrosyst. Geosci. Environ. 2020, 3, 1–9. [Google Scholar] [CrossRef]
Nicotine | Atenolol | Metamizole | Paraxanthine | Caffeine | Fluoxetine | |
---|---|---|---|---|---|---|
Irrigation water (sprinkler) | 132.6 ± 9.0 | 208.7 ± 17.6 | nd | 158.0 ± 13.3 | 116.1 ± 6.8 | 126.7 ± 16.1 |
Irrigation water (pond) | 102.0 ± 6.9 | 57.0 ± 4.8 | nd | 45.4 ± 3.8 | 38.1 ± 2.2 | 35.7 ± 4.5 |
Lysimeter water | 180.3 ± 12.3 | nd | nd | 153.9 ± 12.9 | 167.0 ± 9.9 | 28.8 ± 3.7 |
Gallery (Autumn) | 68.7 ± 4.7 | 6.9 ± 0.6 | nd | 39.9 ± 3.4 | 21.8 ± 1.3 | nd |
Gallery (Winter) | 32.3 ± 2.2 | 8.2 ± 0.7 | nd | 11.8 ± 1.0 | 10.4 ± 0.6 | nd |
Borehole | 71.5 ± 4.9 | 34.8 ± 2.9 | nd | 193.0 ± 16.2 | 36.7 ± 2.2 | 21.5 ± 2.7 |
Well 1 | 45.0 ± 3.1 | nd | nd | 40.1 ± 3.4 | 29.9 ± 1.8 | nd |
Well 2 | 36.7 ± 2.5 | nd | 3.3 ± 0.1 | nd | nd | nd |
Well 3 | 23.2 ± 1.6 | nd | nd | nd | 19.6 ± 1.2 | nd |
Well 4 | nd | 4.3 ± 0.4 | nd | 13.5 ± 1.1 | 37.7 ± 2.2 | nd |
Well 5 | nd | nd | nd | nd | nd | nd |
Well 6 | 43.5 ± 3.0 | 23.6 ± 2.0 | nd | 65.3 ± 5.5 | 3.3 ± 0.2 | nd |
Well 7 | 73.9 ± 5.0 | nd | nd | 33.9 ± 2.9 | 35.7 ± 2.1 | nd |
Well 8 | 58.1 ± 4.0 | 18.4 ± 1.6 | 16.0 ± 0.7 | 49.4 ± 4.2 | 26.4 ± 1.6 | 47.2 ± 6.0 |
Well 9 | 113.6 ± 7.7 | 21.4 ± 1.8 | 33.3 ± 1.5 | 89.5 ± 7.5 | 14.1 ± 0.8 | 34.1 ± 4.3 |
Well 10 | 111.9 ± 7.6 | 67.7 ± 5.7 | 15.1 ± 0.7 | 22.3 ± 1.9 | 44.9 ± 2.6 | 59.2 ± 7.5 |
Well 11 | 108.7 ± 7.4 | 9.1 ± 0.8 | nd | 144.2 ± 12.1 | 38.3 ± 2.3 | nd |
Well 12 | 40.8 ± 2.8 | nd | nd | nd | nd | nd |
Well 13 | 110.6 ± 7.5 | 38.1 ± 3.2 | nd | 146.6 ± 12.3 | 39.2 ± 2.3 | nd |
Well 14 | 35.5 ± 2.4 | nd | nd | nd | nd | nd |
Date | Nicotine | Atenolol | Metamizole | Paraxanthine | Caffeine | Fluoxetine | |
---|---|---|---|---|---|---|---|
Irrigation water (sprinkler) | 03/11/09 | 143.2 ± 9.7 | 58.1 ± 4.9 | nd | 108.3 ± 9.1 | 104.6 ± 6.2 | 67.7 ± 8.6 |
Lysimeter | 02/03/09 | 947.0 ± 64.4 | nd | nd | nd | 293.0 ± 17.3 | nd |
12/03/09 | 1344.1 ± 91.4 | nd | nd | 52.0 ± 4.4 | 291.9 ± 17.2 | nd | |
Water gallery | 07/05/09 | 63.7 ± 4.3 | 1.7 ± 0.1 | nd | 49.8 ± 4.2 | 148.1 ± 8.7 | nd |
14/07/09 | 95.8 ± 6.5 | nd | nd | nd | 21.5 ± 1.3 | nd | |
03/11/09 | 143.2 ± 9.7 | 11.2 ± 0.9 | nd | 14.5 ± 1.2 | 115.6 ± 6.8 | nd | |
Well 3 | 29/04/09 | 39.0 ± 2.7 | nd | nd | nd | 33.7 ± 2.0 | nd |
29/07/09 | 27.9 ± 1.9 | nd | nd | nd | 101.7 ± 6.0 | nd | |
Well 4 | 29/04/09 | 64.6 ± 4.4 | nd | nd | 6.6 ± 0.6 | 53.6 ± 3.2 | nd |
13/07/09 | 36.5 ± 2.5 | nd | nd | nd | 17.3 ± 1.0 | nd | |
03/11/09 | 54.1 ± 3.7 | 8.6 ± 0.7 | nd | nd | 24.9 ± 1.5 | 57.6 ± 7.3 | |
Well 5 | 29/04/09 | 64.8 ± 4.4 | nd | nd | nd | 17.7 ± 1.0 | nd |
13/07/09 | 49.7 ± 3.4 | 2.8 ± 0.2 | nd | 15.9 ± 1.3 | 41.4 ± 2.4 | nd | |
03/11/09 | 47.4 ± 3.2 | nd | nd | nd | 103.0 ± 6.1 | nd | |
Well 6 | 29/04/09 | 55.6 ± 3.8 | nd | nd | nd | 30.9 ± 1.8 | nd |
13/07/09 | 92.3 ± 6.3 | nd | nd | nd | 32.1 ± 1.9 | nd | |
03/11/09 | 58.5 ± 4.0 | nd | nd | nd | 22.0 ± 1.3 | 52.6 ± 6.7 | |
Well 8 | 29/04/09 | 71.6 ± 4.9 | 5.0 ± 0.4 | nd | 33.0 ± 2.8 | 76.4 ± 4.5 | nd |
13/07/09 | 39.6 ± 2.7 | nd | nd | nd | 19.6 ± 1.2 | nd | |
03/11/09 | 59.2 ± 4.0 | nd | nd | 15.1 ± 1.3 | 73.3 ± 4.3 | nd |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Montesdeoca-Esponda, S.; Palacios-Díaz, M.d.P.; Estévez, E.; Sosa-Ferrera, Z.; Santana-Rodríguez, J.J.; Cabrera, M.d.C. Occurrence of Pharmaceutical Compounds in Groundwater from the Gran Canaria Island (Spain). Water 2021, 13, 262. https://doi.org/10.3390/w13030262
Montesdeoca-Esponda S, Palacios-Díaz MdP, Estévez E, Sosa-Ferrera Z, Santana-Rodríguez JJ, Cabrera MdC. Occurrence of Pharmaceutical Compounds in Groundwater from the Gran Canaria Island (Spain). Water. 2021; 13(3):262. https://doi.org/10.3390/w13030262
Chicago/Turabian StyleMontesdeoca-Esponda, Sarah, María del Pino Palacios-Díaz, Esmeralda Estévez, Zoraida Sosa-Ferrera, José Juan Santana-Rodríguez, and María del Carmen Cabrera. 2021. "Occurrence of Pharmaceutical Compounds in Groundwater from the Gran Canaria Island (Spain)" Water 13, no. 3: 262. https://doi.org/10.3390/w13030262
APA StyleMontesdeoca-Esponda, S., Palacios-Díaz, M. d. P., Estévez, E., Sosa-Ferrera, Z., Santana-Rodríguez, J. J., & Cabrera, M. d. C. (2021). Occurrence of Pharmaceutical Compounds in Groundwater from the Gran Canaria Island (Spain). Water, 13(3), 262. https://doi.org/10.3390/w13030262