ZnO/Ag3PO4 and ZnO–Malachite as Effective Photocatalysts for the Removal of Enteropathogenic Bacteria, Dyestuffs, and Heavy Metals from Municipal and Industrial Wastewater
Abstract
:1. Introduction
2. Materials and Methods
2.1. ZnO/Ag3PO4 and ZnO–Malachite Preparation
2.2. Physicochemical Properties Analysis
2.3. Wastewater Sampling
2.4. Photocatalytic Wastewater Treatment
3. Results and Discussion
3.1. Characterization of the ZnO-Based Composites
3.2. Photocatalytic Wastewater Treatment
3.2.1. Municipal Wastewater
3.2.2. Handmade Textile Factory Wastewater
3.2.3. Coal Mining Wastewater
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Luo, J.; Yu, D.; Hristovski, K.D.; Fu, K.; Shen, Y.; Westerhoff, P.; Crittenden, J.C. Critical Review of Advances in Engineering Nanomaterial Adsorbents for Metal Removal and Recovery from Water: Mechanism Identification and Engineering Design. Environ. Sci. Technol. 2021, 55, 4287–4304. [Google Scholar] [CrossRef]
- Yu, D.; Wang, Y.; Wu, M.; Zhang, L.; Wang, L.; Ni, H. Surface functionalization of cellulose with hyperbranched polyamide for efficient adsorption of organic dyes and heavy metals. J. Clean. Prod. 2019, 232, 774–783. [Google Scholar] [CrossRef]
- Yu, D.; Wang, L.; Yang, T.; Yang, G.; Wang, D.; Ni, H.; Wu, M. Tuning Lewis acidity of iron-based metal-organic frameworks for enhanced catalytic ozonation. Chem. Eng. J. 2021, 404, 127075. [Google Scholar] [CrossRef]
- Yu, D.; Lia, L.; Wua, M.; Crittenden, J.C. Enhanced photocatalytic ozonation of organic pollutants using an iron based metal-organic framework. Appl. Catal. B 2019, 251, 66–75. [Google Scholar] [CrossRef]
- Yang, T.; Yu, D.; Wang, D.; Yang, T.; Li, Z.; Wu, M.; Petru, M.; Crittenden, J. Accelerating Fe(III)/Fe(II) cycle via Fe(II) substitution for enhancing Fenton-like performance of Fe-MOFs. Appl. Catal. B 2021, 286, 119859. [Google Scholar] [CrossRef]
- Alani, O.A.; Ari, H.A.; Alani, S.O.; Offiong, N.-A.O.; Feng, W. Visible-Light-Driven Bio-Templated Magnetic Copper Oxide Composite for Heterogeneous Photo-Fenton Degradation of Tetracycline. Water 2021, 13, 1918. [Google Scholar] [CrossRef]
- Ari, H.A.; Alani, O.A.; Zeng, Q.-R.; Ugya, Y.A.; Offiong, N.-A.O.; Feng, W. Enhanced UV-assisted Fenton performance of nanostructured biomimetic α-Fe2O3 on degradation of tetracycline. J. Nanostruct. Chem. 2021. Available online: https://link-springer-com.ezproxy.javeriana.edu.co/search?query=Enhanced+UV-assisted+Fenton+performance+of+nanostructured+biomimetic+%CE%B1-Fe2O3+on+degradation+of+tetracycline&search-within=Journal&facet-journal-id=40097 (accessed on 15 August 2021). [CrossRef]
- Murcia, J.J.; Ávila-Martínez, E.G.; Rojas, H.; Navío, J.A.; Hidalgo, M.C. Study of the E. coli elimination from urban wastewater over photocatalysts based on metallized TiO2. Appl. Catal. B 2017, 200, 469–476. [Google Scholar] [CrossRef]
- Murcia, J.J.; Arias, L.G.; Rojas, H.; Ávila-Martínez, E.G.; Jaramillo, C.; Lara, M.A.; Navío, J.A.; Hidalgo, M.C. Urban wastewater treatment by using Ag/ZnO and Pt/TiO2 photocatalysts. Environ. Sci. Pollut. Res. 2019, 26, 4171–4179. [Google Scholar] [CrossRef] [PubMed]
- Murcia, J.J.; Cely, A.C.; Rojas, H.; Hidalgo, M.C.; Navío, J.A. Fluorinated and Platinized Titania as Effective Materials in the Photocatalytic Treatment of Dyestuffs and Stained Wastewater Coming from Handicrafts Factories. Catalysts 2019, 9, 179. [Google Scholar] [CrossRef][Green Version]
- Murcia, J.J.; Hernández, J.S.; Rojas, H.; Moreno-Cascante, J.; Sánchez-Cid, P.; Hidalgo, M.C.; Navío, J.A.; Jaramillo-Páez, C. Evaluation of Au–ZnO, ZnO/Ag2CO3 and Ag–TiO2 as Photocatalyst for Wastewater Treatment. Top. Catal. 2020, 63, 1286–1301. [Google Scholar] [CrossRef]
- Murcia, J.J.; Hernández-Laverde, M.; Rojas, H.; Muñoz, E.; Navío, J.A.; Hidalgo, M.C. Study of the effectiveness of the flocculation-photocatalysis in the treatment of wastewater coming from dairy industries. J. Photochem. Photobiol. A 2018, 358, 256–264. [Google Scholar] [CrossRef]
- Ming, G.; Zhenlu, L. Recent progress in Ag3PO4-based all-solid-state Z-scheme photocatalytic systems. Chin. J. Catal. 2017, 38, 1794–1803. [Google Scholar]
- Martín-Gómez, A.N.; Navío, J.A.; Jaramillo-Páez, C.; Sánchez-Cid, P.; Hidalgo, M.C. Hybrid ZnO/Ag3PO4 photocatalysts, with low and high phosphate molar percentages. J. Photochem. Photobiol. A 2020, 388, 112196. [Google Scholar] [CrossRef]
- Xu, H.; Dai, D.; Li, S.; Ge, L.; Gao, Y. In situ synthesis of novel Cu2CO3(OH)2 decorated 2D TiO2 nanosheets with efficient photocatalytic H2 evolution activity. Dalton Trans. 2018, 47, 348–356. [Google Scholar] [CrossRef] [PubMed]
- American Public Health Association (APHA). Standard Methods for Examination of Water and Wastewater, 22nd ed.; American Public Health Association/American Water Works Association/Water Environment Federation: Washington, DC, USA, 2012. [Google Scholar]
- Rouquerol, F.; Rouquerol, J.; Sing, K.S.W.; Llewellyn, P.L.; Maurin, G. Adsorption by Powders and Porous Solids: Principles, Methodology and Applications, 2nd ed.; Elsevier/AP: Amsterdam, The Netherlands, 2014. [Google Scholar]
- Jianguo, Y.; Jingrum, R. Facile preparation and enhanced photocatalytic H2-production activity of Cu(OH)2 cluster modified TiO2. Energy Environ. Sci. 2011, 4, 1364–1371. [Google Scholar]
- Ansari, M.A.; Khan, H.M.; Alzohairy, M.A.; Jalal, M.; Ali, S.G.; Pal, R.; Musarrat, J. Green synthesis of Al2O3 nanoparticles and their bactericidal potential against clinical isolates of multi-drug resistant Pseudomonas aeruginosa. World J. Microbiol. Biotechnol. 2015, 31, 153–164. [Google Scholar] [CrossRef] [PubMed]
- Huang, S.; Xu, Y.; Xie, M.; Liu, Q.; Xu, H.; Zhao, Y.; He, M.; Li, H. A Z-scheme magnetic recyclable Ag/AgBr/CoFe2O4 photocatalyst with enhanced photocatalytic performance for pollutant and bacterial elimination. RSC Adv. 2017, 7, 30845–30854. [Google Scholar] [CrossRef][Green Version]
- Ray, S.K.; Dhakal, D.; Pandey, R.P.; Lee, S.W. Ag-BaMoO4: Er3+/Yb3+ photocatalyst for antibacterial application. Mater. Sci. Eng. C 2017, 78, 1164–1171. [Google Scholar] [CrossRef]
- Shirzad-Siboni, M.; Farrokhi, M.; Soltani, R.D.C.; Khataee, A.; Tajassosi, S. Photocatalytic Reduction of Hexavalent Chromium over ZnO Nanorods Immobilized on Kaolin. Ind. Eng. Chem. Res. 2014, 53, 1079–1087. [Google Scholar] [CrossRef]
- Yang, H.; Lin, W.Y.; Rajeshwar, K. Homogeneous and heterogeneous photocatalytic reactions involving As(III) and As(V) species in aqueous media. J. Photochem. Photobiol. A 1999, 123, 137–143. [Google Scholar] [CrossRef]
- Mohamed, R.M.; Barakat, M.A. Enhancement of Photocatalytic Activity of ZnO/SiO2 by Nanosized Pt for Photocatalytic Degradation of Phenol in Wastewater. Int. J. Photoenergy 2012, 2012, 8. [Google Scholar] [CrossRef][Green Version]
- Wahyuni, E.; Aprilita, N.; Hatimah, H.; Wulandari, A.M.; Mudasir, M. Removal of Toxic Metal Ions in Water by Photocatalytic Method. Am. Chem. Sci. J. 2015, 5, 194. [Google Scholar] [CrossRef]
- Murcia, J.J.; Hidalgo, M.C.; Navío, J.A.; Araña, J.; Doña-Rodríguez, J.M. Study of the phenol photocatalytic degradation over TiO2 modified by sulfation, fluorination, and platinum nanoparticles photodeposition. Appl. Catal. B 2015, 179, 305–312. [Google Scholar] [CrossRef]
Photocatalyst | XRF (%) | SBET (m2/g) | Band Gap (eV) | ||||
---|---|---|---|---|---|---|---|
Zn | O | Ag | P | Cu | |||
ZnO | ND * | ND * | --- | --- | --- | 30.20 | 3.25 |
Ag3PO4 | --- | 14.82 | 78.21 | 6.97 | --- | 2.73 | 2.43 |
Malachite | --- | --- | --- | --- | ND | 2.70 | ND |
ZnO/Ag3PO4 (5%) | 66.95 | 18.26 | 13.33 | 1.45 | --- | 28.62 | 1.90 |
ZnO/Ag3PO4 (10%) | 56.76 | 18.54 | 22.42 | 2.28 | --- | 26.53 | 2.26 |
ZnO/Ag3PO4 (50%) | 27.32 | 16.85 | 50.91 | 4.93 | --- | 17.27 | 2.40 |
ZnO-M (0.5%) | 79.43 | 19.98 | --- | --- | 0.59 | 27.60 | ND |
ZnO-M (2.5%) | 75.00 | 21.86 | --- | --- | 3.14 | 29.50 | ND |
Photocatalytic Removal Test | Citrobacter spp. * | E. coli * | Salmonella sp.* | Other Coliforms * | Total (UCF) | Elimination (%) |
---|---|---|---|---|---|---|
Starting sample | 500 | 4000 | 2500 | 7800 | 14,800 | 0 |
Photolysis | 400 | 3540 | 1800 | 6200 | 11,940 | 16.5 |
ZnO | 300 | 800 | 1200 | 3200 | 5500 | 61.5 |
Malachite | 400 | 1000 | 800 | 3600 | 5800 | 59.4 |
ZnO-M (0.5%) | 10 | 0 | 300 | 510 | 820 | 94.3 |
ZnO-M (2.5%) | 0 | 0 | 200 | 250 | 450 | 96.8 |
Ag3PO4 | 100 | 100 | 100 | 200 | 500 | 96.5 |
ZnO/Ag3PO4 (5%) | 0 | 0 | 2 | 0 | 2 | 99.9 |
ZnO/Ag3PO4 (10%) | 0 | 20 | 200 | 120 | 340 | 97.6 |
ZnO/Ag3PO4 (50%) | 0 | 10 | 50 | 185 | 245 | 98.3 |
Photocatalyst | Reaction Time (Min) | Hardness (Mg/L CaCO3) | Alkalinity (Mg/L CaCO3) | Chloride content (Mg/L Cl−) | pH |
---|---|---|---|---|---|
Municipal Wastewater | |||||
Photolysis | 0 | 115 | 375.33 | 1181.8 | 6.35 |
240 | 100 | 350.30 | 1063.6 | 6.39 | |
ZnO | 0 | 120 | 375.33 | 1299.9 | 6.5 |
240 | 115 | 350.30 | 1063.6 | 6.08 | |
ZnO-M (0.5%) | 0 | 130 | 400.35 | 1299.9 | 6.19 |
240 | 115 | 375.33 | 1181.8 | 6.58 | |
ZnO-M (2.5%) | 0 | 120 | 425.37 | 1299.9 | 6.62 |
240 | 105 | 375.33 | 1063.6 | 6.34 | |
Malachite | 0 | 120 | 400.35 | 1181.8 | 6.46 |
240 | 120 | 325.28 | 1181.8 | 6.39 | |
Ag3PO4 | 0 | 130 | 375.33 | 1418.1 | 6.57 |
240 | 120 | 375.33 | 1299.9 | 6.14 | |
ZnO/Ag3PO4 (5%) | 0 | 125 | 425.37 | 1063.6 | 6.82 |
240 | 115 | 400.35 | 945.41 | 6.79 | |
ZnO/Ag3PO4 (10%) | 0 | 130 | 425.37 | 1299.9 | 6.65 |
240 | 120 | 375.33 | 1181.8 | 6.64 | |
ZnO/Ag3PO4 (50%) | 0 | 120 | 400.35 | 1299.9 | 6.32 |
240 | 115 | 350.30 | 1063.6 | 6.42 | |
Handmade Textile Staining Wastewater | |||||
Photolysis | 0 | 1065 | 700.61 | 8390.5 | 4.61 |
240 | 1065 | 675.59 | 8390.5 | 4.61 | |
ZnO | 0 | 1060 | 675.58 | 8508.7 | 4.61 |
240 | 1060 | 575.49 | 8508.7 | 5.86 | |
ZnO-M (0.5%) | 0 | 1055 | 725.63 | 8863.3 | 4.69 |
240 | 1045 | 675.59 | 8626.9 | 5.1 | |
ZnO-M (2.5%) | 0 | 1030 | 675.59 | 8508.7 | 4.81 |
240 | 1045 | 675.59 | 7917.8 | 4.93 | |
Malachite | 0 | 1080 | 725.63 | 8508.7 | 4.64 |
240 | 1035 | 675.59 | 8508.7 | 4.87 | |
Ag3PO4 | 0 | 1055 | 725.63 | 8390.5 | 4.58 |
240 | 1070 | 675.59 | 8272.4 | 4.60 | |
ZnO/Ag3PO4 (5%) | 0 | 1060 | 700.61 | 8626.9 | 4.81 |
240 | 1055 | 650.56 | 8036 | 5.03 | |
ZnO/Ag3PO4 (10%) | 0 | 1060 | 700.61 | 8745.1 | 4.7 |
240 | 1045 | 675.59 | 8508.7 | 5.29 | |
ZnO/Ag3PO4 (50%) | 0 | 1080 | 725.63 | 8626.9 | 4.71 |
240 | 1065 | 700.61 | 8508.7 | 5.38 |
Photocatalytic Removal Test | E. coli * | Salmonella sp. * | Other Coliforms * | Total (UCF) | Elimination (%) |
---|---|---|---|---|---|
Starting sample | 1460 | 390 | 1850 | 3700 | 0 |
Photolysis | 1320 | 350 | 1670 | 3340 | 9.7 |
ZnO | 80 | 40 | 120 | 240 | 93.5 |
Malachite (M) | 30 | 250 | 540 | 820 | 77.8 |
ZnO-M (0.5%) | 50 | 25 | 85 | 160 | 95.7 |
ZnO-M (2.5%) | 35 | 20 | 45 | 100 | 97.3 |
Ag3PO4 | 30 | 10 | 0 | 40 | 98.9 |
ZnO/Ag3PO4 (5%) | 0 | 1 | 0 | 1 | 99.9 |
ZnO/Ag3PO4 (10%) | 0 | 20 | 23 | 43 | 98.8 |
ZnO/Ag3PO4 (50%) | 10 | 30 | 50 | 90 | 97.6 |
Photocatalytic Test | Discoloration (%) | Standard Deviation (SD) |
---|---|---|
Photolysis | 11.85 | 1.31 |
ZnO | 67.33 | 2.05 |
Malachite (M) | 52.86 | 0.83 |
ZnO-M (0.5%) | 70.46 | 0.45 |
ZnO-M (2.5%) | 69.90 | 0.15 |
Ag3PO4 | 62.86 | 1.58 |
ZnO/Ag3PO4 (5%) | 73.63 | 1.75 |
ZnO/Ag3PO4 (10%) | 69.43 | 0.90 |
ZnO/Ag3PO4 (50%) | 70.96 | 0.66 |
Photocatalytic Test | Main Metals in the Liquid Phase | |
---|---|---|
Fe (ppm) | Cu (ppm) | |
Starting sample | 9.00 | 0.20 |
Blank test | 3.21 | 0.18 |
ZnO | 2.01 | - |
Malachite (M) | 2.20 | - |
ZnO-M (0.5%) | 1.70 | - |
ZnO-M (2.5%) | 1.20 | 0.13 |
Ag3PO4 | 2.20 | - |
ZnO/Ag3PO4 (5%) | 2.10 | - |
ZnO/Ag3PO4 (10%) | 1.24 | 0.08 |
ZnO/Ag3PO4 (50%) | 2.47 | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Murcia, J.J.; Hernández Niño, J.S.; Rojas, H.; Brijaldo, M.H.; Martín-Gómez, A.N.; Sánchez-Cid, P.; Navío, J.A.; Hidalgo, M.C.; Jaramillo-Paez, C. ZnO/Ag3PO4 and ZnO–Malachite as Effective Photocatalysts for the Removal of Enteropathogenic Bacteria, Dyestuffs, and Heavy Metals from Municipal and Industrial Wastewater. Water 2021, 13, 2264. https://doi.org/10.3390/w13162264
Murcia JJ, Hernández Niño JS, Rojas H, Brijaldo MH, Martín-Gómez AN, Sánchez-Cid P, Navío JA, Hidalgo MC, Jaramillo-Paez C. ZnO/Ag3PO4 and ZnO–Malachite as Effective Photocatalysts for the Removal of Enteropathogenic Bacteria, Dyestuffs, and Heavy Metals from Municipal and Industrial Wastewater. Water. 2021; 13(16):2264. https://doi.org/10.3390/w13162264
Chicago/Turabian StyleMurcia, Julie Joseane, Jhon Sebastián Hernández Niño, Hugo Rojas, María Helena Brijaldo, Andrés Noel Martín-Gómez, Pablo Sánchez-Cid, José Antonio Navío, María Carmen Hidalgo, and César Jaramillo-Paez. 2021. "ZnO/Ag3PO4 and ZnO–Malachite as Effective Photocatalysts for the Removal of Enteropathogenic Bacteria, Dyestuffs, and Heavy Metals from Municipal and Industrial Wastewater" Water 13, no. 16: 2264. https://doi.org/10.3390/w13162264