Application of Polyaluminium Chloride Coagulant in Urban River Water Treatment Influenced the Microbial Community in River Sediment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Collection and Genomic DNA Extraction
2.2. Physicochemical Analysis of Sampling Sites
2.3. Gene Amplicons and Illumina Miseq Sequencing
2.4. Sequencing Data Processing and Bioinformatics Analysis
2.5. Sequence Accession Number
3. Results
3.1. Physicochemical Properties of Sampling Sites
3.2. Microbial Diversity and Abundance
3.3. Variations of Microbial Composition
3.4. Correlation between Microbial Communities and Environmental Variables
3.5. Functional Predation Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- van Vliet, M.T.H.; Flörke, M.; Wada, Y. Quality matters for water scarcity. Nat. Geosci. 2017, 10, 800–802. [Google Scholar] [CrossRef]
- Chen, W.Y.; Li, X.; Hua, J. Environmental amenities of urban rivers and residential property values: A global meta-analysis. Sci. Total Environ. 2019, 693, 133628. [Google Scholar] [CrossRef]
- Castiglioni, S.; Davoli, E.; Riva, F.; Palmiotto, M.; Camporini, P.; Manenti, A.; Zuccato, E. Mass balance of emerging contaminants in the water cycle of a highly urbanized and industrialized area of Italy. Water Res. 2018, 131, 287–298. [Google Scholar] [CrossRef]
- Monk, W.A.; Compson, Z.G.; Choung, C.B.; Korbel, K.L.; Rideout, N.K.; Baird, D.J. Urbanisation of floodplain ecosystems: Weight-of-evidence and network meta-analysis elucidate multiple stressor pathways. Sci. Total Environ. 2019, 684, 741–752. [Google Scholar] [CrossRef]
- Xia, F.; Qu, L.; Wang, T.; Luo, L.; Chen, H.; Dahlgren, R.A.; Zhang, M.; Mei, K.; Huang, H. Distribution and source analysis of heavy metal pollutants in sediments of a rapid developing urban river system. Chemosphere 2018, 207, 218–228. [Google Scholar] [CrossRef][Green Version]
- Harrison, S.; McAree, C.; Mulville, W.; Sullivan, T. The problem of agricultural ‘diffuse’ pollution: Getting to the point. Sci. Total Environ. 2019, 677, 700–717. [Google Scholar] [CrossRef]
- Giri, S. Water quality prospective in Twenty First Century: Status of water quality in major river basins, contemporary strategies and impediments: A review. Environ. Pollut. 2021, 271, 116332. [Google Scholar] [CrossRef]
- Han, D.; Currell, M.J.; Cao, G. Deep challenges for China’s war on water pollution. Environ. Pollut. 2016, 218, 1222–1233. [Google Scholar] [CrossRef][Green Version]
- Zhao, Z.Y.; Wang, H.R.; Zhang, Y.Y.; Deng, C.Y.; Xie, Q.; Wang, C. Problems and Countermeasures of River Management in the Process of Rapid Urbanization in China. Water 2020, 12, 22602. [Google Scholar] [CrossRef]
- Liu, G. Interactive Participation under a Fragmented Administration System: Watershed Governance in Zhejiang Province, China. In Interactive Approaches to Water Governance in Asia; Otsuka, K., Ed.; Springer: Singapore, 2019; pp. 77–102. [Google Scholar]
- Zhao, C.; Zhou, J.; Yan, Y.; Yang, L.; Xing, G.; Li, H.; Wu, P.; Wang, M.; Zheng, H. Application of coagulation/flocculation in oily wastewater treatment: A review. Sci. Total Environ. 2021, 765, 142795. [Google Scholar] [CrossRef]
- Tang, X.; Zheng, H.; Gao, B.; Zhao, C.; Liu, B.; Chen, W.; Guo, J. Interactions of specific extracellular organic matter and polyaluminum chloride and their roles in the algae-polluted water treatment. J. Hazard. Mater. 2017, 332, 1–9. [Google Scholar] [CrossRef]
- Guo, K.; Gao, B.; Tian, X.; Yue, Q.; Zhang, P.; Shen, X.; Xu, X. Synthesis of polyaluminium chloride/papermaking sludge-based organic polymer composites for removal of disperse yellow and reactive blue by flocculation. Chemosphere 2019, 231, 337–348. [Google Scholar] [CrossRef] [PubMed]
- Li, R.; Gao, B.; Wang, W.; Yue, Q.; Wang, Y. Floc properties and membrane fouling in coagulation/ultrafiltration process for the treatment of Xiaoqing River: The role of polymeric aluminum-polymer dual-coagulants. Chemosphere 2020, 243, 125391. [Google Scholar] [CrossRef]
- Luo, Y.; Gao, B.; Wang, J.; Yue, Q. Synchronous removal of CuO nanoparticles and Cu(2+) by polyaluminum chloride-Enteromorpha polysaccharides: Effect of Al species and pH. J. Environ. Sci. 2020, 88, 1–11. [Google Scholar] [CrossRef]
- Xue, Y.X.; Liu, Z.Z.; Li, A.M.; Yang, H. Application of a green coagulant with PACl in efficient purification of turbid water and its mechanism study. J. Environ. Sci. 2019, 81, 168–180. [Google Scholar] [CrossRef]
- Zhang, Z.; Jing, R.; He, S.R.; Qian, J.; Zhang, K.; Ma, G.L.; Chang, X.; Zhang, M.K.; Li, Y.T. Coagulation of low temperature and low turbidity water: Adjusting basicity of polyaluminum chloride (PAC) and using chitosan as coagulant aid. Sep. Purif. Technol. 2018, 206, 131–139. [Google Scholar] [CrossRef]
- Battin, T.J.; Besemer, K.; Bengtsson, M.M.; Romani, A.M.; Packmann, A.I. The ecology and biogeochemistry of stream biofilms. Nat. Rev. Microbiol. 2016, 14, 251–263. [Google Scholar] [CrossRef][Green Version]
- Ghattas, A.K.; Fischer, F.; Wick, A.; Ternes, T.A. Anaerobic biodegradation of (emerging) organic contaminants in the aquatic environment. Water Res. 2017, 116, 268–295. [Google Scholar] [CrossRef]
- Lemaire, O.N.; Mejean, V.; Iobbi-Nivol, C. The Shewanella genus: Ubiquitous organisms sustaining and preserving aquatic ecosystems. FEMS Microbiol. Rev. 2020, 44, 155–170. [Google Scholar] [CrossRef]
- Ge, Y.; Lou, Y.; Xu, M.; Wu, C.; Meng, J.; Shi, L.; Xia, F.; Xu, Y. Spatial distribution and influencing factors on the variation of bacterial communities in an urban river sediment. Environ. Pollut. 2021, 272, 115984. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Zhang, J.; Li, H.; Yang, H.; Peng, C.; Peng, Z.; Lu, L. Shift in the microbial community composition of surface water and sediment along an urban river. Sci. Total Environ. 2018, 627, 600–612. [Google Scholar] [CrossRef]
- Li, J.G.; Wang, C.D.; Tang, Z.H.; Guo, Y.Q.; Zheng, T.C.; Li, Y.Z.; You, Z.Q. The Gut Bacterial Community Composition of Wild Cervus albirostris (White-Lipped Deer) Detected by the 16S Ribosomal RNA Gene Sequencing. Curr. Microbiol. 2017, 74, 1100–1107. [Google Scholar] [CrossRef]
- Wang, J.; Wang, J.; Zhang, Z.; Li, Z.; Zhang, Z.; Zhao, D.; Wang, L.; Lu, F.; Li, Y.Z. Shifts in the Bacterial Population and Ecosystem Functions in Response to Vegetation in the Yellow River Delta Wetlands. mSystems 2020, 5. [Google Scholar] [CrossRef]
- Oanh, N.T.; Duc, H.D. Anaerobic Degradation of Propanil in Soil and Sediment Using Mixed Bacterial Culture. Curr. Microbiol. 2021. [Google Scholar] [CrossRef] [PubMed]
- Bellemain, E.; Carlsen, T.; Brochmann, C.; Coissac, E.; Taberlet, P.; Kauserud, H. ITS as an environmental DNA barcode for fungi: An in silico approach reveals potential PCR biases. BMC Microbiol. 2010, 10, 189. [Google Scholar] [CrossRef][Green Version]
- Magoc, T.; Salzberg, S.L. FLASH: Fast length adjustment of short reads to improve genome assemblies. Bioinformatics 2011, 27, 2957–2963. [Google Scholar] [CrossRef]
- Caporaso, J.G.; Kuczynski, J.; Stombaugh, J.; Bittinger, K.; Bushman, F.D.; Costello, E.K.; Fierer, N.; Pena, A.G.; Goodrich, J.K.; Gordon, J.I.; et al. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 2010, 7, 335–336. [Google Scholar] [CrossRef][Green Version]
- Edgar, R.C.; Haas, B.J.; Clemente, J.C.; Quince, C.; Knight, R. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 2011, 27, 2194–2200. [Google Scholar] [CrossRef][Green Version]
- Dong, C.; Yao, T.; Zhang, Z.; Chen, W.; Liang, J.; Han, Y.; Huang, J.; Deshmukh, S.K.; Liang, Z. Structure and Function of Bacterial Microbiota in Eucommia ulmoides Bark. Curr. Microbiol. 2020, 77, 3623–3632. [Google Scholar] [CrossRef]
- Nguyen, N.H.; Song, Z.W.; Bates, S.T.; Branco, S.; Tedersoo, L.; Menke, J.; Schilling, J.S.; Kennedy, P.G. FUNGuild: An open annotation tool for parsing fungal community datasets by ecological guild. Fungal Ecol. 2016, 20, 241–248. [Google Scholar] [CrossRef]
- Wang, Q.; Zhang, Q.; Wu, Y.; Wang, X.C. Physicochemical conditions and properties of particles in urban runoff and rivers: Implications for runoff pollution. Chemosphere 2017, 173, 318–325. [Google Scholar] [CrossRef]
- Daryabeigi Zand, A.; Hoveidi, H. Comparing Aluminium Sulfate and Poly-Aluminium Chloride (PAC) Performance in Turbidity Removal from Synthetic Water. J. Appl. Biotechnol. Rep. 2015, 2, 287–292. [Google Scholar]
- Renault, F.; Sancey, B.; Badot, P.M.; Crini, G. Chitosan for coagulation/flocculation processes–An eco-friendly approach. Eur. Polym. J. 2009, 45, 1337–1348. [Google Scholar] [CrossRef]
- Xiao, F.; Huang, J.-C.H.; Zhang, B.-J.; Cui, C.-W. Effects of low temperature on coagulation kinetics and floc surface morphology using alum. Desalination 2009, 237, 201–213. [Google Scholar] [CrossRef]
- Igbokwe, I.O.; Igwenagu, E.; Igbokwe, N.A. Aluminium toxicosis: A review of toxic actions and effects. Interdiscip. Toxicol. 2019, 12, 45–70. [Google Scholar] [CrossRef][Green Version]
- Vidu, R.; Matei, E.; Predescu, A.M.; Alhalaili, B.; Pantilimon, C.; Tarcea, C.; Predescu, C. Removal of Heavy Metals from Wastewaters: A Challenge from Current Treatment Methods to Nanotechnology Applications. Toxics 2020, 8, 101. [Google Scholar] [CrossRef] [PubMed]
- Schulz, C.J.; Canedo-Arguelles, M. Lost in translation: The German literature on freshwater salinization. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2018, 374. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Jaiswal, S.K.; Naamala, J.; Dakora, F.D. Nature and mechanisms of aluminium toxicity, tolerance and amelioration in symbiotic legumes and rhizobia. Biol. Fertil. Soils 2018, 54, 309–318. [Google Scholar] [CrossRef]
- Chen, S.H.; Ng, S.L.; Cheow, Y.L.; Ting, A.S.Y. A novel study based on adaptive metal tolerance behavior in fungi and SEM-EDX analysis. J. Hazard. Mater. 2017, 334, 132–141. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.Y.; Fang, X.X.; Wu, H.; Cai, X.Y.; Xiao, H.X. Effects of plant cultivars on the structure of bacterial and fungal communities associated with ginseng. Plant. Soil 2021. [Google Scholar] [CrossRef]
- Zhang, Y.; Dong, S.K.; Gao, Q.Z.; Liu, S.L.; Ganjurjav, H.; Wang, X.X.; Su, X.K.; Wu, X.Y. Soil bacterial and fungal diversity differently correlated with soil biochemistry in alpine grassland ecosystems in response to environmental changes. Sci. Rep. 2017, 7, 1–10. [Google Scholar] [CrossRef]
- Huber, P.; Metz, S.; Unrein, F.; Mayora, G.; Sarmento, H.; Devercelli, M. Environmental heterogeneity determines the ecological processes that govern bacterial metacommunity assembly in a floodplain river system. ISME J. 2020, 14, 2951–2966. [Google Scholar] [CrossRef]
- Chen, J.; Wang, P.; Wang, C.; Wang, X.; Miao, L.; Liu, S.; Yuan, Q.; Sun, S. Fungal community demonstrates stronger dispersal limitation and less network connectivity than bacterial community in sediments along a large river. Environ. Microbiol. 2020, 22, 832–849. [Google Scholar] [CrossRef]
- Lyu, Z.; Shao, N.; Akinyemi, T.; Whitman, W.B. Methanogenesis. Curr. Biol. 2018, 28, R727–R732. [Google Scholar] [CrossRef][Green Version]
- Bridgham, S.D.; Cadillo-Quiroz, H.; Keller, J.K.; Zhuang, Q. Methane emissions from wetlands: Biogeochemical, microbial, and modeling perspectives from local to global scales. Glob. Chang. Biol. 2013, 19, 1325–1346. [Google Scholar] [CrossRef]
- Wang, C.; Liu, S.; Wang, P.F.; Chen, J.; Wang, X.; Yuan, Q.S.; Ma, J.J. How sediment bacterial community shifts along the urban river located in mining city. Environ. Sci. Pollut. Res. 2021. [Google Scholar] [CrossRef]
- Nega, M.; Braun, B.; Kunzel, S.; Szewzyk, U. Evaluating the Impact of Wastewater Effluent on Microbial Communities in the Panke, an Urban River. Water 2019, 11, 888. [Google Scholar] [CrossRef][Green Version]
- Clinton, S.; Johnson, J.; Lambirth, K.; Sun, S.; Brouwer, C.; Keen, O.; Redmond, M.; Fodor, A.; Gibas, C. Sediment Microbial Diversity in Urban Piedmont North Carolina Watersheds Receiving Wastewater Input. Water 2020, 12, 1557. [Google Scholar] [CrossRef]
- Paruch, L.; Paruch, A.M.; Eiken, H.G.; Skogen, M.; Sorheim, R. Seasonal dynamics of lotic bacterial communities assessed by 16S rRNA gene amplicon deep sequencing. Sci. Rep. 2020, 10. [Google Scholar] [CrossRef]
- Jiang, T.; Sun, S.; Chen, Y.; Qian, Y.; Guo, J.; Dai, R.; An, D. Microbial diversity characteristics and the influence of environmental factors in a large drinking-water source. Sci. Total Environ. 2021, 769, 144698. [Google Scholar] [CrossRef]
- de Souza, L.M.D.; Ogaki, M.B.; Camara, P.; Pinto, O.H.B.; Convey, P.; Carvalho-Silva, M.; Rosa, C.A.; Rosa, L.H. Assessment of fungal diversity present in lakes of Maritime Antarctica using DNA metabarcoding: A temporal microcosm experiment. Extremophiles 2021, 25, 77–84. [Google Scholar] [CrossRef] [PubMed]
- Mansour, I.; Heppell, C.M.; Ryo, M.; Rillig, M.C. Application of the microbial community coalescence concept to riverine networks. Biol. Rev. Camb. Philos. Soc. 2018, 93, 1832–1845. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Krauss, G.J.; Sole, M.; Krauss, G.; Schlosser, D.; Wesenberg, D.; Barlocher, F. Fungi in freshwaters: Ecology, physiology and biochemical potential. FEMS Microbiol. Rev. 2011, 35, 620–651. [Google Scholar] [CrossRef] [PubMed]
Sample ID | Depth (m) | Turbidity (NTUs) a | TDS b (mg/L) | Salinity (g/kg) | pH | C/N c Ratio | Total Mg (mg/L) | Total Al (mg/L) | Total Ca (mg/L) | Total Mn (mg/L) |
---|---|---|---|---|---|---|---|---|---|---|
A1 | 2.00~2.20 | 315 ± 10.6 | 426 ± 12.4 | 0.447 ± 0.0350 | 7.51 ± 0.0208 | 22.1 ± 1.91 | 20.2 ± 1.33 | 0.0729 ± 0.00125 | 647 ± 10.1 | 0.0185 ± 0.00244 |
A2 | 0.80~1.00 | 280 ± 9.80 | 488 ± 7.72 | 0.505 ± 0.0210 | 7.24 ± 0.0186 | 19.4 ± 1.45 | 23.7 ± 1.01 | 0.158 ± 0.00213 | 1.16 × 103 ± 17.6 | 5.27 ± 0.0162 |
A3 | 1.50~1.80 | 5.91 ± 1.48 | 349 ± 2.10 | 0.378 ± 0.0140 | 7.23 ± 0.0171 | 9.20 ± 1.41 | 13.3 ± 0.316 | 0.177 ± 0.00180 | 870 ± 15.1 | 0.0166 ± 0.00120 |
A4 | 2.10~2.40 | 3.67 ± 0.778 | 457 ± 5.46 | 0.493 ± 0.0170 | 7.47 ± 0.0386 | 12.9 ± 3.30 | 21.6 ± 0.622 | 0.599 ± 0.00275 | 1.24 × 103 ± 20.6 | 1.08 ± 0.00701 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, S.; Zhuang, X.; Wang, C. Application of Polyaluminium Chloride Coagulant in Urban River Water Treatment Influenced the Microbial Community in River Sediment. Water 2021, 13, 1791. https://doi.org/10.3390/w13131791
Liu S, Zhuang X, Wang C. Application of Polyaluminium Chloride Coagulant in Urban River Water Treatment Influenced the Microbial Community in River Sediment. Water. 2021; 13(13):1791. https://doi.org/10.3390/w13131791
Chicago/Turabian StyleLiu, Siyu, Xuchao Zhuang, and Chuandong Wang. 2021. "Application of Polyaluminium Chloride Coagulant in Urban River Water Treatment Influenced the Microbial Community in River Sediment" Water 13, no. 13: 1791. https://doi.org/10.3390/w13131791