Coastal Structures as Beach Erosion Control and Sea Level Rise Adaptation in Malaysia: A Review
Abstract
:1. Introduction
1.1. Study Area
1.2. Coastal Climate
1.2.1. Winds
1.2.2. Tides
1.2.3. Wave
1.2.4. Nearshore Current
1.3. Socioeconomic Along the Coastline
2. Coastal Management Strategies
3. Coastal Erosion
3.1. Hard Structures
3.1.1. Seawall and Rock Revetment
3.1.2. Breakwater and Perpendicular Groyne
3.1.3. Porous Submerged Breakwater
3.1.4. Geotextile-Tube Protection
3.2. Soft Engineering and Ecological Based Approach
3.2.1. Beach Nourishment and Reprofiling
3.2.2. Mangrove Rehabilitation as a Natural Coastal Protection
4. Sea Level Rise
4.1. Adaptation with Increased Pillar
4.2. Structural Seawall, Bunds, and Mangrove
4.3. Proposed Flood Gate and Tidal Barrier
4.4. Abandoned Coconut Plantation, Batu Pahat
5. Shoreline Erosion Defense and Sea Level Rise Adaptation
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Chen, S.-L.; Jeevan, J.; Cahoon, S. Malaysian Container Seaport-Hinterland Connectivity: Status, Challenges and Strategies. Asia J. Shipp. Logist 2016, 32, 127–138. [Google Scholar] [CrossRef] [Green Version]
- Flewwelling, P.; Hosch, G. Country Review—Malaysia; Food and Agriculture Organization of the United Unions: Rome, Italy, 2004; Available online: http://www.fao.org/3/a0477e/a0477e0c.htm (accessed on 22 June 2021).
- Wong, P.P. Where have all the beaches gone. Singap. J. Trop. Geogr. 2003, 24, 111–132. [Google Scholar] [CrossRef]
- Prasad, D.H.; Kumar, N.D. Coastal Erosion Studies—A Review. Int. J. Geosci. 2014, 5, 341–345. [Google Scholar] [CrossRef] [Green Version]
- Noujas, V.; Thomas, K.V. Erosion Hotspots along Southwest Coast of India. Aquat. Procedia 2015, 4, 548–555. [Google Scholar] [CrossRef]
- Yincan, Y. Coastal Erosion. In Marine Geo-Hazards in China; Elsevier: Amsterdam, The Netherlands, 2017; pp. 269–296. [Google Scholar]
- Amara, R.; Diop, M.; Diop, C.; Ouddane, B. Chapter 37: The Senegalese Coastal and Marine Environment. In World Seas: An Environmental Evaluation; Elsevier: Amsterdam, The Netherlands, 2019; pp. 855–873. [Google Scholar]
- Ariffin, E.H. Effect of Monsoons on Beach Morphodynamics in the East Coast of Peninsular Malaysia. Universite Bretagne Loire, France. 2017. Available online: https://www.researchgate.net/publication/320563984_Effect_of_Monsoons_on_Beach_Morphodynamics_in_the_East_Coast_of_Peninsular_Malaysia_Examples_from_Kuala_Terengganu_coast (accessed on 12 February 2021).
- Church, J.A.; Aarup, T.; Woodworth, P.L.; Wilson, W.S.; Nicholls, R.J.; Rayner, R.; Lambeck, K.; Mitchum, G.T.; Steffen, K.; Cazenave, A.; et al. Chapter 13 Synthesis and Outlook for the Future. In Understanding Sea-Level Rise and Variability; Blackwell Publishing Ltd.: Amsterdam, The Netherlands, 2010. [Google Scholar]
- Hsan, S.; Begum, R.A.; Nor, N.G.; Abdul Maulud, K.N. Current and potential impacts of sea level rise in Malaysia. In Proceedings of the 3rd International Conference on Science & Technology Applications in Climate Change (STACLIM 2018), Melaka, Malaysia, 13–15 November 2018. [Google Scholar]
- De Almeida, B.A.; Mostafavi, A. Resilience of Infrastructure Systems to Sea-Level Rise in Coastal Areas: Impacts, Adaptation Measures, and Implementation Challenges. Sustainability 2016, 8, 1115. [Google Scholar] [CrossRef] [Green Version]
- Zhang, K.; Douglas, B.C.; Leatherman, S.P. Global Warming and Coastal Erosion. Clim. Chang. 2004, 64, 41–58. [Google Scholar] [CrossRef]
- Ghazali, N.H.M.; Awang, N.A.; Mahmud, M.; Mokhtar, A. Impact of Sea Level Rise and Tsunami on Coastal Areas of North-West Peninsular Malaysia. Irrig. Drain. 2018, 67, 119–129. [Google Scholar] [CrossRef]
- JPBD. Report Rancangan Fizikal Zon Pesisiran Pantai Negara; Federal Town and Country Planning Department: Kuala Lumpur, Malaysia, 2012; ISBN 9789832839354.
- Nordin, D.Y.B. Towards sustainable coastal planning and policies from a Malaysian perspective. In Environmental Problems in Coastal Regions VI; WIT Press: Southampton, UK, 2006; pp. 45–54. [Google Scholar]
- Mohamad, M.F.; Lee, L.H.; Samion, M.K.H. Coastal Vulnerability Assessment towards Sustainable Management of Peninsular Malaysia Coastline. J. Environ. 2014, 5, 533–538. [Google Scholar] [CrossRef] [Green Version]
- Nicholls, R.J.; Cazenave, A. Sea-level rise and its impact on coastal zones. Science 2010, 328, 1517–1520. [Google Scholar] [CrossRef]
- NOAA. Hurricane Post Tropical Cyclone Sandy; National Oceanic and Atmospheric Administration & National Weather Service: Washington, DC, USA, 2012. Available online: https://www.weather.gov/media/publications/assessments/Sandy13.pdf (accessed on 22 January 2021).
- Hosen, N.; Nakamura, H.; Hamzah, A. Adaptation to Climate Change: Does Traditional Ecological Knowledge Hold the Key? Sustainability 2020, 12, 676. [Google Scholar] [CrossRef] [Green Version]
- Hamzah, F.M.; Saimi, F.M.; Jaafar, O. Identifying the Monotonic Trend in Climate Change Parameter in Kluang and Senai, Johor, Malaysia. Sains Malays. 2017, 46, 1735–1741. [Google Scholar] [CrossRef]
- Williams, A.T.; Rangel-Buitrago, N.; Pranzini, E.; Anfuso, G. The management of coastal erosion. Ocean Coast Manag. 2018, 156, 4–20. [Google Scholar] [CrossRef]
- Van Rijn, L.C. Coastal erosion and control. Ocean Coast Manag. 2011, 54, 867–887. [Google Scholar] [CrossRef]
- Kudryavtsev, S.; Shin, E.C.; Kim, S.H.; Hakam, A.; Istijono, B.; Yoo, C.; Zhussupbekov, A. Erosion problems of shore line and counter measurement by various geomaterials. MATEC Web Conf. 2019, 265. [Google Scholar] [CrossRef]
- Pranzini, E.; Wetzel, L.; Williams, A. Aspects of coastal erosion and protection in Europe. J. Coast. Conserv. 2015, 19, 445–459. [Google Scholar] [CrossRef]
- Pranzini, E. Coastal Erosion and Protection in Europe; Routledge: London, UK; New York, NY, USA, 2013; pp. 294–323. [Google Scholar]
- Ghazali, N.H.M. New Innovations and Technologies in Coastal Rehabilitation. In Proceedings of the International Conference on Innovations and Technologies in Oceanography for Sustainable Development, Kuala Lumpur, Malaysia, 26–28 November 2005. [Google Scholar]
- UKDiss. Malaysia Maritime Environmental Issues and Its Impact. 2019, 2021. Dissertation Theses. Available online: https://ukdiss.com/examples/malaysia-maritime-environmental-issues.php (accessed on 23 January 2021).
- Hashim, S.A. Presentation National Coastal Erosion Study for Malaysia 2015. In International Symposium of Coastal Erosion and Environment; Department of Drainage and Irrigation Malaysia: Putrajaya, Malaysia, 2018. [Google Scholar]
- Razi, M.A.M.; Mahamud, M.; Hashim, S.A.; Mokhtar, A.; Ismail, I.B. Integrated Approach for Shoreline Management Plan for Coastline of Sarawak. In Proceedings of the Water and Enviromental Engineering, Johor, Malaysia, 18 December 2019; Available online: https://www.researchgate.net/publication/338005429_Water_and_Environmental_Engineering_Vol3 (accessed on 19 June 2021).
- Fakarudin, F.J.; Sang, Y.W.; Mat Adam, M.K.; Chang, N.K.; Abdullah, M.H. Analysis of the North East Monsoon 2016/2017; Research Publication No.1/2017; Malaysian Meteorological Dpartment: Kuala Lumpur, Malaysia, 2017.
- Abdulkareem, J.H.; Pradhan, B.; Sulaiman, W.N.A.; Jamil, N.R. Review of studies on hydrological modelling in Malaysia. MESE 2018, 4, 1577–1605. [Google Scholar] [CrossRef] [Green Version]
- Masseran, N.; Razali, A.M. Modeling the wind direction behaviors during the monsoon seasons in Peninsular Malaysia. For. Ecol. Manag. 2016, 56, 1419–1430. [Google Scholar] [CrossRef]
- Moten, S.; Yunus, F.; Ariffin, M.; Burham, N.; Jeong Yik, D.; Mat, Y.; Adam, M.; Yip, A.; Sang, W. Statistics of Northeast Monsoon Onset, Withdrawal and Cold Surges in MalaysiaStatistic of Northeast Monsoon Onset, Withdrawal and Cold Surges in Malaysia. 2018, Guidelines 14. Available online: https://www.researchgate.net/publication/326883916_Statistics_of_Northeast_Monsoon_Onset_Withdrawal_and_Cold_Surges_in_MalaysiaStatistic_of_Northeast_Monsoon_Onset_Withdrawal_and_Cold_Surges_in_Malaysia (accessed on 12 September 2020).
- Wong, C.-L.; Liew, J.; Yusop, Z.; Ismail, T.; Venneker, R.; Uhlenbrook, S. Rainfall Characteristics and Regionalization in Peninsular Malaysia Based on a High Resolution Gridded Data Set. Water 2016, 8, 500. [Google Scholar] [CrossRef] [Green Version]
- Syamsul, R.; Peter, D.; Mulyadi, A.W.; Jürgen, S.; Yopi, I.; Taufiq, I.; Muhammad. General Circulation in the Malacca Strait and Andaman Sea: A Numerical Model Study. Am. J. Environ. Sci. 2012, 8. [Google Scholar] [CrossRef]
- Chenoli, S.N.; Jayakrishnan, P.R.; Samah, A.A.; Hai, O.S.; Ahmad Mazuki, M.Y.; Lim, C.H. Southwest monsoon onset dates over Malaysia and associated climatological characteristics. J. Atmos. Sol. Terr. Phys. 2018, 179, 81–93. [Google Scholar] [CrossRef]
- Hicks, S.D. Understanding Tides. 2006. Available online: https://tidesandcurrents.noaa.gov/publications/Understanding_Tides_by_Steacy_finalFINAL11_30.pdf (accessed on 13 April 2021).
- Yusoff, N.A.; Ramli, N.L.; Mohamed, M.R. Investigation of the potential harnessing tidal energy in Malaysia. ARPN J. Appl. Sci. Eng. 2015, 10, 9835–9841. Available online: http://www.arpnjournals.org/jeas/research_papers/rp_2015/jeas_1115_2992.pdf (accessed on 15 December 2020).
- Garrison, T.S.; Ellis, R. Essentials of Oceanography, 8th ed.; US Cengage Learning: Boston, MA, USA, 2018. [Google Scholar]
- Daryabor, F.; Ooi, S.; Abu samah, A.; Akbari, A. Tides and Their Dynamics over the Sunda Shelf of the Southern South China Sea. PLoS ONE 2016, 11, e0162170. [Google Scholar] [CrossRef]
- Haditiar, Y.; Putri, M.R.; Ismail, N.; Muchlisin, Z.A.; Ikhwan, M.; Rizal, S. Numerical study of tides in the Malacca Strait with a 3-D model. Heliyon 2020, 6, e04828. [Google Scholar] [CrossRef] [PubMed]
- JUPEM. Book Tide Prediction Tables—Jadual Ramalan Air Pasang Surut Malaysia; Department of Survey and Mapping Malaysia: Kuala Lumpur, Malaysia, 2019.
- Yaakob, O.; Hashim, F.E.; Mohd Omar, K.; Md Din, A.H.; Koh, K.K. Satellite-based wave data and wave energy resource assessment for South China Sea. Renew. Energy 2016, 88, 359–371. [Google Scholar] [CrossRef]
- Daud, N.R.; Akhir, M.F.; Husain, M. Water circulation in the shallow shelf areas off the terengganu coast affected by wind stress force using a hydrodynamic model. J Sustain. Sci. Manag. 2016, 11, 81–92. Available online: https://www.researchgate.net/publication/311573892_Water_circulation_in_the_shallow_shelf_areas_off_the_terengganu_coast_affected_by_wind_stress_force_using_a_hydrodynamic_model (accessed on 22 March 2021).
- Muzathik, A.; Wan Nik, W.S.; Samo, K.; Ibrahim, M.Z. Ocean Wave Measurement and Wave Climate Prediction of Peninsular Malaysia. J. Phys. Sci. 2011, 22, 79–94. Available online: https://jps.usm.my/ocean-wave-measurement-wave-climate-prediction-peninsular-malaysia/ (accessed on 22 June 2021).
- Rijn, L.V. Coastal Hydrodynamics Processes in the Coastal Zone. 2013. Available online: https://www.leovanrijn-sediment.com/papers/Coastalhydrodynamics2013.pdf (accessed on 22 June 2021).
- Mohd, F.A.; Abdul Maulud, K.N.; Abd Rahman, A.A.; Ibrahim, M.A.; Awang, N.A.; Abd Rahim, N.A.; Abd Razak, A.H. Evaluation and verification of numerical modelling of nearshore changes due to waves and currents parameter in Carey Island, Malaysia. IOP Conf. Ser. Earth Environ. Sci. 2018, 169, 012054. [Google Scholar] [CrossRef]
- Fitri, A.; Hashim, R.; Motamedi, S. Estimation and validation of nearshore current at the coast of Carey Island, Malaysia. Pertanika J. Sci. Technol. 2017, 25, 1009–1018. Available online: https://www.researchgate.net/publication/318272293_Estimation_and_validation_of_nearshore_current_at_the_coast_of_Carey_Island_Malaysia (accessed on 14 April 2021).
- Fitri, A.; Hashim, R.; Song, K.-I.; Motamedi, S. Evaluation of Morphodynamic Changes in the Vicinity of Low-Crested Breakwater on Cohesive Shore of Carey Island, Malaysia. Coast. Eng. 2016, 57. [Google Scholar] [CrossRef]
- DOSM. Demographic Statistics Third Quarter 2020, Malaysia. 2020. Available online: https://www.dosm.gov.my/v1/index.php?r=column/cthemeByCat&cat=430&bul_id=YUttRnlGZ2VXSkg0M0F2ZHZFTE9IUT09&menu_id=L0pheU43NWJwRWVSZklWdzQ4TlhUUT09 (accessed on 23 March 2021).
- Hoh, B.-P.; Deng, L.; Julia-Ashazila, J.; Zuraihan, Z.; Nur-Hasnah, M.; Ab Rajab, N.S.; Wan-Isa, H.; Ismail, E.; Zilfalil, A.; Yusoff, K.; et al. Fine-scale population structure of Malays in Peninsular Malaysia and Singapore and implications for association studies. Hum. Genom. 2015, 9. [Google Scholar] [CrossRef] [Green Version]
- World Bank. Life expectancy at Birth, Malaysia. In United Nations Population Division. World Population Prospects: 2019 Revision; World Bank: Geneva, Switzerland, 2019. [Google Scholar]
- Hassan, M.; Rahmat, N. The Effect of Coastline Changes to Local Community Social-Economic. Int. Arch. Photogramm. Remote. Sens. Spat. Inf. Sci. 2016, 42, 25–36. [Google Scholar] [CrossRef] [Green Version]
- Yusof, Y.; Kalirajan, K. Variations in economic growth across states in Malaysia: An exploratory analysis. J. Econ. Stud. 2020. ahead-of-print. [Google Scholar] [CrossRef]
- DOSM. Key Statistics of Labour Force in Malaysia, Department of Statistics, Malaysia. September 2020. Available online: https://www.dosm.gov.my/v1/index.php?r=column/cthemeByCat&cat=124&bul_id=Z0M1dy9sQjYrMXBTNVpEVE5HVWt5Zz09&menu_id=Tm8zcnRjdVRNWWlpWjRlbmtlaDk1UT09 (accessed on 23 March 2021).
- DOSM. Selected Agricultural Indicators, Malaysia, Department of Statistics, Malaysia; September 2020. Available online: https://www.dosm.gov.my/v1/index.php?r=column/cthemeByCat&cat=72&bul_id=RXVKUVJ5TitHM0cwYWxlOHcxU3dKdz09&menu_id=Z0VTZGU1UHBUT1VJMFlpaXRRR0xpdz09 (accessed on 23 March 2021).
- Brohi, S.N.; Pillai, T.R.; Asirvatham, D.; Ludlow, D.; Bushell, J. Towards Smart Cities Development: A Study of Public Transport System and Traffic-related Air Pollutants in Malaysia. In Proceedings of the 8th International Conference on Environment Science and Engineering, Barcelona, Spain, 23 July 2018; pp. 1–10. [Google Scholar]
- MOT. Kuala Lumpur International Airport among Top Ranked Airports. 2016. Ministry of Transport, Source: The Star Page 8. Available online: https://www.mot.gov.my/my/Berita%20Terkini/KLIA%20among%20top%20ranked%20airports.pdf (accessed on 24 March 2021).
- ADB. Report on State of Coral Triangle Malaysia; Asian Development Bank: Manila, Philippines, 2014. [Google Scholar]
- Sany, S.B.T.; Tajfard, M.; Rezayi, M.; Rahman, M.A.; Hashim, R. The West Coast of Peninsular Malaysia. In World Seas: An Environmental Evaluation; Academic Press: Cambridge, MA, USA, 2019; pp. 437–458. [Google Scholar]
- MOSTI. National Coastal Resources and Marine Environmental Profile of Malaysia; Ministry of Science, Technology and Innovation: Kuala Lumpur, Malaysia, 2010.
- Intergovernmental Panel on Climate Change; Coastal Zone Management Subgroup; Dronkers, J.J.; Misdorp, R.; Spradley, J.R. Strategies for Adaptation to Sea Level Rise; Ministry of Transport and Public Works, Rijkswaterstaat, Tidal Waters Division: Geneva, Switzerland, 1990.
- Stelljes, N.; Martinez, G.; McGlade, K. Introduction to the RISC-KIT web based management guide for DRR in European coastal zones. Coast. Eng. 2018, 134, 73–80. [Google Scholar] [CrossRef]
- Frohle, P.; Müncheberg, R. Fokusthema 1: Küstenschutz. In RADOST Jahresbericht. RADOST-Berichtsreihe; RADOST-Verbund, Ed.; Bericht Nr. 21: Berlin, Germany, 2013. [Google Scholar]
- Gracia, A.; Rangel-Buitrago, N.; Oakley, J.A.; Williams, A.T. Use of ecosystems in coastal erosion management. Ocean Coast. Manag. 2018, 156, 277–289. [Google Scholar] [CrossRef]
- Heurtefeux, H.; Sauboua, P.; Lanzellotti, P.; Bichot, A. Coastal Risk Management Modes: The Managed Realignment as a Risk Conception More Integrated. In Risk Management in Environment, Production and Economy; Intech Open: London, UK, 2011. [Google Scholar]
- Sarkar, M.S.K.; Begum, R.; Pereira, J.; Jaafar, A.; Saari, M.Y. Impacts of and Adaptations to Sea Level Rise in Malaysia. Asian J. Water Environ. Pollut. 2014, 11, 29–36. Available online: https://www.ukm.my/ipi/wp-content/uploads/2014/09/impactsofandadaptationstosealevelriseinmsia.pdf (accessed on 12 December 2020).
- DID. National Coastal Erosion Study (NCES2015) Report; Department of Drainage and Irrigation: Kuala Lumpur, Malaysia, 2015; p. ES27.
- EPU. National Coastal Erosion Study (NCES1985) Report; Economy Planning Unit, Department of Drainage and Irrigation, Prime Minister Office: Kuala Lumpur, Malaysia, 1985.
- Abdullah, Y.A.; Hashim, H.; Nasrudin, N.; Ahmad, P. Nurturing Community Engagement in Coastal Erosion Risk Management in Kuala Selangor, Malaysia. Environ. Behav. Proc. J. EBPJ 2020, 5, 275–283. [Google Scholar] [CrossRef]
- Aisyah, A.; Shahrul, A.; Zulfahmie, M.; Mastura, S.S.; Mokhtar, J. Deforestation analysis in Selangor, Malaysia between 1989 and 2011. J. Trop. 2015, 3–12. Available online: https://www.frim.gov.my/v1/JTFSOnline/jtfs/v27n1/003-012.pdf (accessed on 3 January 2021).
- Yang, B.; Madden, M.; Kim, J.; Jordan, T.R. Geospatial analysis of barrier island beach availability to tourists. Tour. Manag. 2012, 33, 840–854. [Google Scholar] [CrossRef]
- Rashidi, A.H.M.; Ab Ghani, N.H.; Sendek, S.S.M.; Jamal, M.H.; Hamid, M.R.A. Beach Protection System Using Nahrim Coastal Erosion Protection And Beach Expansion (NEXC) Block at Pantai Batu 5, Port Dickson, Negeri Sembilan, Malaysia. In Proceedings of the 4th International Conference on Water Research 2018, Langkawi, Malaysia, 17–21 July 2018. [Google Scholar]
- Young, D.M.; Testik, F.Y. Wave reflection by submerged vertical and semicircular breakwaters. Coast. Eng. 2011, 38, 1269–1276. [Google Scholar] [CrossRef]
- Na’im, I.I.; Razak, M.S.A.; Desa, S. A Short Review of Submerged Breakwaters. MATEC Web Conf. 2018, 208, 01005. [Google Scholar]
- Vona, I.; Gray, M.W.; Nardin, W. The Impact of Submerged Breakwaters on Sediment Distribution along Marsh Boundaries. Water 2020, 12, 1016. [Google Scholar] [CrossRef] [Green Version]
- Young, D.M.; Testik, F.Y. Onshore scour characteristics around submerged vertical and semicircular breakwaters. Coast. Eng. 2009, 56, 868–875. [Google Scholar] [CrossRef]
- Hashim, R.; Kamali, B.; Tamin, N.M.; Zakaria, R. An integrated approach to coastal rehabilitation: Mangrove restoration in Sungai Haji Dorani, Malaysia. Estuar. Coast. Shelf Sci. 2010, 86, 118–124. [Google Scholar] [CrossRef] [Green Version]
- Kamali, B.; Hashim, R.; Akib, S. Efficiency of an integrated habitat stabilisation approach to coastal erosion management. Phys. Sci. Int. J. 2010, 5, 1401–1405. Available online: http://eprints.um.edu.my/8842/1/Efficiency_of_an_integrated_habitat_stabilisation_approach_to_coastal_erosion_management.pdf (accessed on 19 December 2020).
- Alongi, D.M. Present state and future of the world’s mangrove forests. Environ. Conserv. 2002, 29, 331–349. [Google Scholar] [CrossRef] [Green Version]
- Fitri, A.; Hashim, R.; Abolfathi, S.; Abdul Maulud, K.N. Dynamics of sediment transport and erosion-deposition patterns in the locality of a detached low-crested breakwater on a cohesive coast. Water 2019, 11, 1721. [Google Scholar] [CrossRef] [Green Version]
- Ariffin, E.H.; Sedrati, M.; Akhir, M.F.; Daud, N.R.; Yaacob, R.; Husain, M.L. Beach morphodynamics and evolution of monsoon-dominated coasts in Kuala Terengganu, Malaysia: Perspectives for integrated management. Ocean Coast. Manag. 2018, 163, 498–514. [Google Scholar] [CrossRef]
- Ariffin, E.H.; Zulfakar, M.S.Z.; Redzuan, N.S.; Mathew, M.J.; Akhir, M.F.; Baharim, N.B.; Awang, N.A.; Mokhtar, N.A. Evaluating the Effects of Beach Nourishment on Littoral Morphodynamics at Kuala Nerus, Terengganu (Malaysia). J. Sustain. Sci. Manag. 2020, 15, 29–42. [Google Scholar] [CrossRef]
- Rashidi, A.H.M.; Samion, M.K.H.; Sendek, S.S.M.; Abd Hamid, M.R.; Jamal, M.H. Physical Modelling Experiment for Coastal Protection System Stability and Efficiency Analysis. In Proceedings of the National Seminar on Physical Modelling Application & Technology, Putrajaya, Malaysia, 3 March 2016. [Google Scholar]
- Mohd, F.A.; Abdul Maulud, K.N.; Karim, O.A.; Begum, R.A.; Awang, N.A.; Ahmad, A.; Wan Mohamed Azhary, W.A.H.; Kamarudin, M.K.A.; Jaafar, M.; Wan Mohtar, W.H.M. Comprehensive coastal vulnerability assessment and adaptation for Cherating-Pekan coast, Pahang, Malaysia. Ocean Coast. Manag. 2019, 182. [Google Scholar] [CrossRef]
- Wong, P.P. Coastal Protection Measures–Case of Small Island Developing States to Address Sea-level Rise. Asian J. Environ. Ecol. 2018, 1–14. [Google Scholar] [CrossRef]
- Anandkumar, A.; Vijith, H.; Nagarajan, R.; Jonathan, M. Evaluation of decadal shoreline changes in the coastal region of Miri, Sarawak, Malaysia. In Coastal Management; Academic Press: Cambridge, MA, USA, 2019; pp. 95–119. [Google Scholar]
- Herbst, D.F.; Gerhardinger, L.C.; Vila-Nova, D.A.; de Carvalho, F.G.; Hanazaki, N. Integrated and deliberative multidimensional assessment of a subtropical coastal-marine ecosystem (Babitonga bay, Brazil). Ocean Coast. Manag. 2020, 196, 105279. [Google Scholar] [CrossRef]
- Chen, C.-L.; Lee, T.-C.; Liu, C.-H. Beyond sectoral management: Enhancing Taiwan’s coastal management framework through a new dedicated law. Ocean Coast. Manag. 2019, 169, 157–164. [Google Scholar] [CrossRef]
- Fatimah, E.; Wahab, A.K.A.; Ismail, H. Numerical modeling approach of an artificial mangrove root system (ArMS) submerged breakwater as wetland habitat protector. In Proceedings of the 7th International Conference on Coastal and Port Engineering, PIANC-COPEDEC VII, Dubai, United Arab Emirates, 24–28 February 2008; pp. 1–20. [Google Scholar]
- Jakobsen, F.; Hartstein, N.; Frachisse, J.; Golingi, T. Sabah shoreline management plan (Borneo, Malaysia): Ecosystems and pollution. Ocean Coast. Manag. 2007, 50, 84–102. [Google Scholar] [CrossRef]
- Geng, C.N.; Saleh, E.; Kiat, Y.T.; Isnain, I. Effect of artificial structures on shoreline profile of Selingan Island, Sandakan, Sabah, Malaysia. Borneo J. Mar. Sci. Aquac. BJoMSA 2018, 2, 9–15. Available online: https://www.researchgate.net/publication/329449977_Effect_of_artificial_structures_on_shoreline_profile_of_Selingan_Island_Sandakan_Sabah_Malaysia (accessed on 11 March 2021).
- Desa, S.M.; Karim, O.A.; Mohamed, A. Submerged breakwater hydrodynamic modeling for wave dissipation and coral restorer structure. In Proceedings of the 3rd International Conference on Biomedical and Bioinformatics Engineering, Taipei, Taiwan, 12–14 November 2016; pp. 98–101. [Google Scholar]
- Desa, S.M.; Karim, O.A.; Melini, W.H.; Mohamed, A.; Mohamad, F.; Chatta, I. Wave energy dissipation laboratory modelling of submerged breakwater for shoreline erosion control. Def. ST Tech. Bull 2016, 9, 68–74. [Google Scholar]
- Borsje, B.W.; van Wesenbeeck, B.K.; Dekker, F.; Paalvast, P.; Bouma, T.J.; van Katwijk, M.M.; de Vries, M.B. How ecological engineering can serve in coastal protection. Ecol. Eng. 2011, 37, 113–122. [Google Scholar] [CrossRef]
- Mohamad, M.F.; Ang, S.Y.; Saiful Bahri, H.; Mohd Kamarul Huda, S. Colonization of Marine Epibiota around WABCORE Artificial Reef at Panuba Bay, Tioman Island, Malaysia. APCBEE Procedia 2013, 5, 416–422. [Google Scholar] [CrossRef]
- Sulaiman, R.B.R.; Mohidin, F.S.M. Establishment of Shoreline Buffer Zone through Rehabilitation of Degraded Coastal Mangroves. MATEC Web Conf. 2018, 203, 01019. [Google Scholar] [CrossRef]
- Wodehouse, D.C.; Rayment, M.B. Mangrove area and propagule number planting targets produce sub-optimal rehabilitation and afforestation outcomes. Estuar. Coast. Shelf Sci. 2019, 222, 91–102. [Google Scholar] [CrossRef] [Green Version]
- Lee, E.C.; Douglas, R.S. Geotextile tubes as submerged dykes for shoreline management in Malaysia. Geotext. Geomembr. 2012, 30, 8–15. [Google Scholar] [CrossRef]
- Awang, N.A.; Jusoh, W.H.W.; Hamid, M.R.A. Coastal Erosion at Tanjong Piai, Johor, Malaysia. J. Coast. Res. 2014, 71, 122–130. [Google Scholar] [CrossRef]
- Tan, K.S.; Hisham, N.; Ghazali, M.; Ong, H.L.; Mohd Zulkefli, A. Geotextile Tubes for Protection of Mangrove Coast in Malaysia. 2007. The Institution of Engineers, Malaysia (IEM) Bulletin. Available online: http://103.86.130.60/xmlui/bitstream/handle/123456789/14117/14-16-18-19-geotextile%20tube.pdf?sequence=1 (accessed on 28 December 2020).
- Abdullah, A.N. Mangrove Reforestation in Kuala Teriang area, Langkawi. In Proceedings of the Regional Seminar on Integrated Coastal Resources Management Approach in Southeast Asia: Review of the Project ICRM-PL, Langkawi, Malaysia, 21–23 October 2008; pp. 181–185. [Google Scholar]
- Das, S. Does mangrove plantation reduce coastal erosion? Assessment from the west coast of India. Reg. Environ. Chang. 2020, 20. [Google Scholar] [CrossRef]
- Chong, L.S.; Tian, L.S. Beach Nourishment As a Means of Coastal Erosion Control: The Malaysian Experience. In Proceedings of the Seminar Geologi dan Sekitaran: Impak dan Pengauditan, Kuala Lumpur, Malaysia, 6–8 December 1996; Available online: https://www.water.gov.my/jps/resources/auto%20download%20images/5844e2f074c75.pdf (accessed on 19 June 2021).
- Tan, K.S.; Hisham, N.; Ghazali, M.; Ong, H.L. Rehabilitation of the Beach at Teluk Cempedak, Pahang, Using Pressure Equalisation Modules (PEM) System; The Institution of Engineers: Petaling Jaya, Malaysia, 2009; Available online: http://dspace.unimap.edu.my/bitstream/handle/123456789/15468/Feature0809.pdf?sequence=1&isAllowed=y (accessed on 19 June 2021).
- Jakobsen, P.; Brøgger, C. Coastal protection based on Pressure Equalization Modules (PEM). In Proceedings of the Conference International Coastal Symposium 2007, Gold Coast, Australia, 16–20 April 2007; Available online: http://www.shore.dk/ICS2007%20Paper%20Poul%20Jakobsen.pdf (accessed on 19 June 2021).
- De Winter, R.; Gongriep, F.; Ruessink, B. Observations and modeling of alongshore variability in dune erosion at Egmond aan Zee, the Netherlands. Coast. Eng. 2015, 99, 167–175. [Google Scholar] [CrossRef]
- Reedijk, B.; Zelfde van’t, A.; Pieterse, J.-J. Results from The Dutch Ecobeach Pilot Project. Coast. Eng. Proc. 2014, 26. [Google Scholar] [CrossRef] [Green Version]
- Christensen, K.W.; Gable, F.J. Results of a 3-Year Beach Erosion Control Project in Hillsboro Beach, Florida, Utilizing Pressure Equalizing Modules (PEM). In Proceedings of the 36th Conference on Coastal Engineering, Baltimore, MD, USA, 30 July–3 August 2018; p. 25. [Google Scholar]
- Isha, I.; Adib, M.; Daud, M. Composition of particle size at Regency Beach, Port Dickson. In IOP Conference Series: Earth and Environmental Science; IOP Publishing: Bristol, UK, 2020; p. 012070. [Google Scholar]
- Beaven, R.; Stringfellow, A.; Nicholls, R.; Haigh, I.; Kebede, A.S.; Watts, J. Future challenges of coastal landfills exacerbated by sea level rise. Waste Manag. 2020, 105, 92–101. [Google Scholar] [CrossRef] [PubMed]
- Aouiche, I.; Daoudi, L.; Anthony, E.J.; Sedrati, M.; Ziane, E.; Harti, A.; Dussouillez, P. Anthropogenic effects on shoreface and shoreline changes: Input from a multi-method analysis, Agadir Bay, Morocco. Geomorphol. Amst. 2016, 254, 16–31. [Google Scholar] [CrossRef]
- Satake, K.; Aung, T.T.; Sawai, Y.; Okamura, Y.; Win, K.S.; Swe, W.; Swe, C.; Swe, T.L.; Tun, S.T.; Soe, M.M. Tsunami heights and damage along the Myanmar coast from the December 2004 Sumatra-Andaman earthquake. Earth Planets Space 2006, 58, 243–252. [Google Scholar] [CrossRef] [Green Version]
- Hashim, A.; Shahruzzaman, D. Effectiveness of Mangrove Forest as Coastal Protection along the West Coast of Northern Peninsular Malaysia. MATEC Web Conf. 2017, 87, 01014. [Google Scholar] [CrossRef] [Green Version]
- Kathiresan, K.; Rajendran, N. Coastal mangrove forests mitigated tsunami. Estuar. Coast. Shelf Sci. 2005, 65, 601–606. [Google Scholar] [CrossRef]
- Shafiai, S.H.; Jaafar, A.J.; Rashid, A.H.M. A Decade after the Tsunami: Preliminary Exploration Deposit Layer of Sediment at Coast Area of Kedah, Malaysia. J. Kejuruter. 2016, 28, 1–8. [Google Scholar] [CrossRef]
- Hashim, A.M.; Catherine, S.M.P. A Laboratory Study on Wave Reduction by Mangrove Forests. APCBEE Procedia 2013, 5, 27–32. [Google Scholar] [CrossRef] [Green Version]
- Mullarney, J.C.; Henderson, S.M.; Reyns, J.A.; Norris, B.K.; Bryan, K.R. Spatially varying drag within a wave-exposed mangrove forest and on the adjacent tidal flat. Cont. Shelf Res. 2017, 147, 102–113. [Google Scholar] [CrossRef]
- Richards, D.R.; Friess, D.A. Rates and drivers of mangrove deforestation in Southeast Asia, 2000–2012. Proc. Natl. Acad. Sci. USA 2016, 113, 344–349. [Google Scholar] [CrossRef] [Green Version]
- Friess, D.A.; Thompson, B.S.; Brown, B.; Amir, A.A.; Cameron, C.; Koldewey, H.J.; Sasmito, S.D.; Sidik, F. Policy challenges and approaches for the conservation of mangrove forests in Southeast Asia. Conserv. Biol. 2016, 30, 933–949. [Google Scholar] [CrossRef]
- Ilman, M.; Dargusch, P.; Dart, P. A historical analysis of the drivers of loss and degradation of Indonesia’s mangroves. Land Use Policy 2016, 54, 448–459. [Google Scholar] [CrossRef]
- Nordhaus, I.; Toben, M.; Fauziyah, A. Impact of deforestation on mangrove tree diversity, biomass and community dynamics in the Segara Anakan lagoon, Java, Indonesia: A ten-year perspective. Estuar. Coast. Shelf Sci. 2019, 227, 106300. [Google Scholar] [CrossRef]
- Haryanti, R.; Fahrudin, A.; Susanto, H. Analysis degradation of mangrove vegetation in Tangerang District, Banten Province. In IOP Conference Series: Earth and Environmental Science; IOP Publishing: Bristol, UK, 2020; p. 012109. [Google Scholar]
- Sarmin, N.; Hasmadi, I.M.; Pakhriazad, H.; Khairil, W. The DPSIR framework for causes analysis of mangrove deforestation in Johor, Malaysia. Environ. Nanotechnol. Monit. 2016, 6, 214–218. [Google Scholar] [CrossRef]
- Sarmin, N.; Hasmadi, I.M.; Pakhriazad, H.; Khairil, W.; Roslan, M.M. Deforestation Awareness Among The Community Living Near Mangroves in Mukim Tanjung Kupang, Johor, Malaysia. Sci. Int. 2017, 29, 115–119. Available online: http://psasir.upm.edu.my/id/eprint/61291/ (accessed on 12 January 2021).
- Martínez-Espinosa, C.; Wolfs, P.; Velde, K.V.; Satyanarayana, B.; Dahdouh-Guebas, F.; Huge, J. Call for a collaborative management at Matang Mangrove Forest Reserve, Malaysia: An assessment from local stakeholders’ view point. For. Ecol. Manag. 2020, 458, 117741. [Google Scholar] [CrossRef]
- Hilaluddin, F.; Yusoff, F.; Natrah, F.; Lim, P. Disturbance of mangrove forests causes alterations in estuarine phytoplankton community structure in Malaysian Matang mangrove forests. Mar. Environ. Res. 2020, 158, 104935. [Google Scholar] [CrossRef] [PubMed]
- Dinesh, B.; Furusawa, G.; Amirul, A. Mangrovimonas xylaniphaga sp. nov. isolated from estuarine mangrove sediment of Matang Mangrove Forest, Malaysia. Arch. Microbiol. 2017, 199, 63–67. [Google Scholar] [CrossRef]
- Goessens, A.; Satyanarayana, B.; Van der Stocken, T.; Zuniga, M.Q.; Mohd-Lokman, H.; Sulong, I.; Dahdouh-Guebas, F. Is Matang Mangrove Forest in Malaysia sustainably rejuvenating after more than a century of conservation and harvesting management? PLoS ONE 2014, 9, e105069. [Google Scholar] [CrossRef]
- Ye, Y.; Tam, N.F.; Wong, Y.; Lu, C. Does sea level rise influence propagule establishment, early growth and physiology of Kandelia candel and Bruguiera gymnorrhiza? J. Exp. Mar. Biol. 2004, 306, 197–215. [Google Scholar] [CrossRef]
- Motamedi, S.; Hashim, R.; Zakaria, R.; Song, K.-I.; Sofawi, B. Long-term assessment of an innovative mangrove rehabilitation project: Case study on Carey Island, Malaysia. Sci. World J. 2014, 2014. [Google Scholar] [CrossRef]
- NAHRIM. The Study of Impact of Climate Change on Sea Level Rise in Malaysia; National Hydraulic Research Institute of Malaysia: Selangor, Malaysia; Ministry of Natural Resources and Environment: Selangor, Malaysia, 2010.
- NAHRIM. Impact of Climate Change: Sea Level Rise Projection in Malaysia; National Hydraulic Research Institute of Malaysia: Selangor, Malaysia; Ministry of Water, Land and Natural Resources: Putrajaya, Malaysia, 2017.
- Church, J.A.; Clark, P.U.; Cazenave, A.; Gregory, J.M.; Jevrejeva, S.; Levermann, A.; Merrifield, M.A.; Milne, G.A.; Nerem, R.S.; Nunn, P.D. Sea-Level Rise by 2100. Science 2013, 342, 1445. [Google Scholar] [CrossRef] [Green Version]
- Hamid, A.I.A.; Din, A.H.M.; Hwang, C.; Khalid, N.F.; Tugi, A.; Omar, K.M. Contemporary sea level rise rates around Malaysia: Altimeter data optimization for assessing coastal impact. J. Asian Earth Sci 2018, 166, 247–259. [Google Scholar] [CrossRef]
- Awang, N.A.; Hamid, M.R.A. Sea Level Rise in Malaysia. Hydrolink 2013, 2, 47–49. Available online: https://research.fit.edu/media/site-specific/researchfitedu/coast-climate-adaptation-library/asia-amp-indian-ocean/southeast-asia-amp-philippines/Awang--Hamid.--2013.--SLR-in-Malaysia.pdf (accessed on 22 June 2021).
- Mohamad, M.F.; Hamid, M.R.A.; Awang, N.A.; Shah, A.M.; Hamzah, A.F. Impact of Sea Level Rise Due to Climate Change: Case Study of Klang and Kuala Langat Districts. Int. J. Eng. Technol. 2018, 10, 59–64. [Google Scholar] [CrossRef] [Green Version]
- Betzold, C. Adapting to climate change in small island developing states. Clim. Chang. 2015, 133, 481–489. [Google Scholar] [CrossRef]
- Awang, N.A.; Shah, A.M.; Ahmad, A.; Benson, Y.A.; Hamid, M.R.A. Sea Level Rise Impacts and Adaption Measures for Sandakan. In Proceedings of the 11th International Conference on Hydroscience & Engineering, Hamburg, Germany, 28 September–2 October 2014. [Google Scholar]
- Mohd Salleh, S.H.; Ahmad, A.; Wan Mohtar, W.H.M.; Lim, C.H.; Abdul Maulud, K.N. Effect of projected sea level rise on the hydrodynamic and suspended sediment concentration profile of tropical estuary. Reg. Stud. Mar. Sci. 2018, 24, 225–236. [Google Scholar] [CrossRef]
- Awang, N.A.; Anizawati, A.; Lee, H.L. Hydrodynamics in mangroves at Kelantan Delta: Numerical analysis. Malays. J. Sci. 2013, 32, 155–170. Available online: https://www.cabdirect.org/cabdirect/abstract/20143329762 (accessed on 22 December 2020).
- Pereira, D.; Shah, A.M.; Hasan, M.; Ahmad, A.; Alwi, A.; Md, Z. Saline Water Intrusion through Rajang River Network due to Sea Level Rise. J. Mech. Civ. Eng. IOSR-JMCE 2019, 16. [Google Scholar] [CrossRef]
- Benson, Y.A.; Hamid, M.R.A.; Pereira, D. Impact of Sea Level Rise on Low Lying Area of Coastal Zone: The Case of Batu Pahat. In Proceedings of the 4th IAHR Europe Congress, Liege, Belgium, 27–29 July 2016. [Google Scholar]
- Wan Mohtar, W.H.M.; Nawang, S.A.B.; Abdul Maulud, K.N.; Benson, Y.A.; Azhary, W.A.H.W.M. Textural characteristics and sedimentary environment of sediment at eroded and deposited regions in the severely eroded coastline of Batu Pahat, Malaysia. Sci. Total Environ. 2017, 598, 525–537. [Google Scholar] [CrossRef]
- Ghazali, N.H.M. Coastal erosion and reclamation in Malaysia. Aquat. Ecosyst. Health Manag. 2006, 9, 237–247. [Google Scholar] [CrossRef]
- Cheon, S.-H.; Suh, K.-D. Effect of sea level rise on nearshore significant waves and coastal structures. Ocean Eng. 2016, 114, 280–289. [Google Scholar] [CrossRef]
- Le Cozannet, G.; Garcin, M.; Petitjean, L.; Cazenave, A.; Becker, M.; Meyssignac, B.; Walker, P.; Devilliers, C.; Le Brun, O.; Lecacheux, S.; et al. Exploring the relation between sea level rise and shoreline erosion using sea level reconstructions: An example in French Polynesia. J. Coast. Res. 2013, 165, 2137–2142. [Google Scholar] [CrossRef]
- Ishak, D.S.M.; Abd Wahab, A.K.; Teh, S.Y.; Jamal, M.H. Projected ecosystem response to the anticipated effects of sea level rise. Phys. Chem. Earth 2020, 120, 102934. [Google Scholar] [CrossRef]
- Lavine, W.; Jamal, M.H.; Abd Wahab, A.K.; Kasiman, E.H. Effect of sea level rise on oil spill model drift using TELEMAC-2D. J. Water Clim. Chang. 2020, 11, 1021–1031. [Google Scholar] [CrossRef]
- Awang, N.A.; Anuar, N.; Hamid, M.R.A.; Mohamad, M. Modification of design parameters for coastal protection structures in view of future sea level rise for east coast Peninsular Malaysia. In Proceedings of the Australian Coasts & Ports Conference, Hobart, Tasmania, 10–13 September 2019. [Google Scholar]
- Jones, A. Chapter 7: Potential Coastal Erosion of the Swan Coastal Plain due to long-term Sea Level Rise. In Natural Hazard Risk in Perth, WA; Geoscience Australia: Canberra, Australia, 2005. [Google Scholar]
- Romine, B.M.; Fletcher, C.H.; Barbee, M.M.; Anderson, T.R.; Frazer, L.N. Are beach erosion rates and sea-level rise related in Hawaii? Glob. Planet Chang. 2013, 108, 149–157. [Google Scholar] [CrossRef]
- Ling, S.Y.; Veerasamy, K.; Jamal, M.H.; Ab Razak, M.S. Preliminary Modelling Assessment of Hydrodynamic Simulation due to Terengganu Airport Runway Extension. In IOP Conference Series: Earth and Environmental Scienc; IOP Publishing: Bristol, UK, 2019; Volume 357, p. 012036. [Google Scholar]
- Rangel-Buitrago, N.; Williams, A.; Anfuso, G. Hard protection structures as a principal coastal erosion management strategy along the Caribbean coast of Colombia. A chronicle of pitfalls. Ocean Coast. Manag. 2018, 156, 58. [Google Scholar] [CrossRef]
Coastal Protection System | Pros | Cons |
---|---|---|
Hard Structures Seawalls, revetments, armor rocks Breakwater and perpendicular groyne Detached and offshore breakwater Submerged dykes and breakwater Temporary sandbag and tubes Floodgate and tidal barriers Innovative structures | Effective shoreline control Quick/different types Promote beach build-up Safe for public use Promote beach build-up Aesthetic value, reef/coral Cheap and quick Avoid saline intrusion Easy, quick, and cheap | Wave overtop/reflection Local scour and erosion Erosion at downdrift Rip current generation Costly, eye-sore Less effective Require maintenance Deplete sediment source Less effective |
Soft Engineering and Ecological Based Beach nourishment Mangrove replanting The artificial reef, seagrass, and seaweed Creation of wetland and dune building | As the natural sandy beach As natural muddy shore Rejuvenate biodiversity Create a new ecosystem | Expensive, maintenance Long term effect Long term effect Long term effect |
Infrastructure Modification Elevation of seawall and breakwater Raise the level of platform and piers | Cheaper and adaptive Periodically if required | Eyesore, limited beach space, maintenance |
State | Length (km) | Total Eroded Coastline (km) | Critical and Significant Erosion (km) |
---|---|---|---|
Perlis | 26.4 | 0.1 | 0.0 |
Kedah | 639.8 | 26.8 | 15.5 |
Pulau Pinang | 215.6 | 16.3 | 9.7 |
Perak | 397.5 | 95.1 | 33.9 |
Selangor | 492.1 | 74.6 | 23.4 |
Negeri Sembilan | 65.0 | 9.8 | 9.6 |
Melaka | 120.5 | 3.7 | 1.9 |
Johor | 813.6 | 64.7 | 38.1 |
Pahang | 378.4 | 61.8 | 18.4 |
Terengganu | 443.1 | 48.7 | 27.7 |
Kelantan | 179.5 | 19.8 | 4.5 |
Sarawak | 1234.1 | 492.5 | 163.4 |
Sabah | 3752.9 | 429.3 | 82.1 |
Labuan | 81.5 | 4.4 | 3.1 |
Total | 8840.0 | 1347.6 | 431.3 |
Methods | Malaysia (Year) | Global |
---|---|---|
Tide Gauge | 2.2–5.3 (1993–2015) | 3.2 (2.8–3.6) |
Satellite Altimetry | 2.8–4.4 (1993–2015) |
Projection/Location | Sea Level Rise | Note |
---|---|---|
Projection 2100 (RCP 8.5) for Peninsular Malaysia | 0.67–0.71 m (10.5–10.9 mm/year) | Maximum SLR—east coast of Johor, Pahang, Terengganu and Kelantan |
Projection 2100 (RCP 8.5) for East Malaysia | 0.71–0.74 m (10.9–11.1 mm/year) | Maximum SLR–Sabah (Kudat) |
Coastal Defense Approach | Erosion Control (Future) | Sea Level Rise Adaptation |
---|---|---|
Coastal bunds, seawall, and revetment | Effective | Adaptive |
Offshore breakwater and geotextile tubes | No significant change Long term: less effective | No significant change Long term; less effective |
Submerged breakwater | Less effective | Not effective |
Beach nourishment | Effective | Effective, immediate impact |
Mangrove replanting | Fairly effective | Effective, the long term impact |
Tidal barrier, flood gate | Not effective | Avoid saline intrusion |
Abandoned wetland | Effective | Effective, need more space |
Innovation structure | Effective and adaptive | Adaptive |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mohamed Rashidi, A.H.; Jamal, M.H.; Hassan, M.Z.; Mohd Sendek, S.S.; Mohd Sopie, S.L.; Abd Hamid, M.R. Coastal Structures as Beach Erosion Control and Sea Level Rise Adaptation in Malaysia: A Review. Water 2021, 13, 1741. https://doi.org/10.3390/w13131741
Mohamed Rashidi AH, Jamal MH, Hassan MZ, Mohd Sendek SS, Mohd Sopie SL, Abd Hamid MR. Coastal Structures as Beach Erosion Control and Sea Level Rise Adaptation in Malaysia: A Review. Water. 2021; 13(13):1741. https://doi.org/10.3390/w13131741
Chicago/Turabian StyleMohamed Rashidi, Ahmad Hadi, Mohamad Hidayat Jamal, Mohamad Zaki Hassan, Siti Salihah Mohd Sendek, Syazana Lyana Mohd Sopie, and Mohd Radzi Abd Hamid. 2021. "Coastal Structures as Beach Erosion Control and Sea Level Rise Adaptation in Malaysia: A Review" Water 13, no. 13: 1741. https://doi.org/10.3390/w13131741