Mapping of Major Land-Use Changes in the Kolleru Lake Freshwater Ecosystem by Using Landsat Satellite Images in Google Earth Engine
Abstract
1. Introduction
2. Study Area
3. Data and Methods
4. Results and Discussion
4.1. Pre-Operation Kolleru
4.2. Post-“Operation Kolleru”
4.3. Accuracy Assessment
4.4. Analysis of Land-Use Changes for Three Decades
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Yihdego, Y.; Webb, J. Assessment of wetland hydrological dynamics in a modified catchment basin: Case of Lake Buninjon, Victoria, Australia. Water Environ. Res. J. 2017, 89, 144–154. [Google Scholar] [CrossRef] [PubMed]
- Scheffer, M. Ecology of Shallow Lakes; Springer: Amsterdam, The Netherlands, 2004. [Google Scholar]
- Scheffer, M.; Jeppesen, E. Regime Shifts in Shallow Lakes. Ecosystems 2007, 10, 1–3. [Google Scholar] [CrossRef]
- Scheffer, M.; Nees, E.V. Shallow lakes theory revisited: Various alternative regimes driven by climate, nutrients, depth and lake size. Hydrobiologia 2007, 584, 455–466. [Google Scholar] [CrossRef]
- Bassi, N.; Kumar, M.D.; Sharma, A.; Saradhi, P.P. Status of wetlands in India: A review of extent, ecosystem benefits, threats, and management strategies. J. Hydrol. Reg. Stud. 2014, 2, 1–19. [Google Scholar] [CrossRef]
- Karthe, D.; Büche, T.; Chifflard, P. Editorial: Hydrogeography-linking water resources and their management to physical and anthropogenic catchment processes. Die Erde 2018, 149, 1–7. [Google Scholar]
- Sun, Z.; Groll, M.; Opp, C. Lake-catchment interactions and their responses to hydrological extremes. Quat. Int. 2018, 475, 1–3. [Google Scholar] [CrossRef]
- Yihdego, Y.; Webb, J. An empirical water budget model as a tool to identify the impact of land-use change in stream flow in southeastern Australia. Water Resour. Manag. J. 2013, 27, 4941–4958. [Google Scholar] [CrossRef]
- Elliott, S.; Brigham, M.; Lee, K.; Banda, J.; Choy, S.; Gefell, D.; Minarik, T.; Moore, J.; Jorgenson, Z. Contaminants of emerging concern in tributaries to the Laurentian Great Lakes: I. Patterns of occurrence. PLoS ONE 2017, 12, e0182868. [Google Scholar] [CrossRef]
- Ma, R.; Wang, B.; Lu, S.; Zhang, Y.; Yin, L.; Huang, J.; Deng, S.; Wang, Y.; Yu, G. Characterization of pharmaceutically active compounds in Dongting Lake, China: Occurrencem chiral profiling and environmental risk. Sci. Total Environ. 2016, 557, 268–275. [Google Scholar] [CrossRef]
- Schindler, D. Recent advances in the understanding and management of eutrophication. Limnol. Oceanogr. 2006, 51, 356–363. [Google Scholar] [CrossRef]
- Smith, V.; Joye, S.; Howarth, R. Eutrophication of freshwater and marine ecosystems. Limnol. Oceanogr. 2006, 51, 351–355. [Google Scholar] [CrossRef]
- Smith, V.; Tilman, G.; Nekola, J. Eutrophication: Imapacts of excess nutrients inputs on freshwater, marine, and terrestrial ecosystems. Environ. Pollut. 1999, 100, 176–196. [Google Scholar] [CrossRef]
- Taylor, S.D.; He, Y.; Hiscock, K.M. Modeling the impacts of agricultural management practices on river water quality in Eastern England. J. Environ. Manag. 2016, 180, 147–163. [Google Scholar] [CrossRef] [PubMed]
- Cook, S.; Housley, L.; Back, J.; King, R. Freshwater eutrophication drives sharp reductions in temporal beta diversity. Ecology 2018, 99, 47–56. [Google Scholar] [CrossRef]
- Smith, V. Eutrphication of freshwater and coastal marine ecosystems a global problem. Environ. Sci. Pollut. Res. 2003, 10, 126–139. [Google Scholar] [CrossRef]
- Bakker, E.; von Donk, E.; Immers, A. Lake restoration by in-lake iron addition: A synopsis of iron impact on aquatic organisms and shallow lake ecosystems. Aquat. Ecol. 2016, 50, 121–135. [Google Scholar] [CrossRef]
- Kowalczewska-Madura, K.; Dondajewska, R.; Gołdyn, R.; Rosińska, J.; Podsiadłowski, S. Internal phosphorus loading as the response to complete and then limited sustainable restoration of a shallow lake. Ann. Limnol. Int. J. Lim. 2019, 55, 4. [Google Scholar] [CrossRef]
- Bartout, P.; Touchart, L.; Terasmaa, J.; Choffel, Q.; Marzecova, A.; Koff, T.; Kapanen, G.; Qsair, Z.; Maleval, V.; Millot, C.; et al. A new approach to inventorying bodies of water, from local to globla scale. Die Erde 2015, 146, 245–258. [Google Scholar]
- Verpoorter, C.; Kutser, T.; Seekell, D.; Tranvik, L. A global inventory of lakes based on high-resolution satellite imagery. Geophys. Res. Lett. 2014, 41, 6396–6402. [Google Scholar] [CrossRef]
- Gross, M. The world’s vanishing lakes. Curr. Biol. 2017, 27, R43–R46. [Google Scholar] [CrossRef]
- Host, G.; Kovalenko, K.; Brown, T.; Ciborowski, J.; Johnson, L. Risk-based classification and interactive map of watersheds contributing anthropogenic stress to Laurentian Great Lakes coastal ecosystems. J. Great Lakes Res. 2019, 45, 609–618. [Google Scholar] [CrossRef]
- Chaudhari, S.; Felfelani, F.; Shin, S.; Pokhrel, Y. Climate and anthropogenic contributions to the desiccation of the second largest saline lake in the twentieth century. J. Hydrol. 2018, 560, 342–353. [Google Scholar] [CrossRef]
- Dunalska, J.; Wiśniewski, G. Can we stop the degradation of lakes? Innovative approaches in lake restoration. Ecol. Eng. 2016, 95, 714–722. [Google Scholar] [CrossRef]
- Bai, J.; Chen, X.; Li, J.; Yang, L.; Fang, H. Changes in the area of inland lakes in arid regions of Central Asia during the past 30 years. Environ. Monit. Assess. 2010, 178, 247–256. [Google Scholar] [CrossRef]
- They, N.; Amado, A.; Cotner, J. Redfield ratios in inland waters: Higher biological control of C:N:P ratios in tropical semi-arid high water residence time lakes. Front. Microbiol. 2017, 8, 1505. [Google Scholar] [CrossRef]
- Rosińska, J.; Gołdyn, R. Changes in macrophyte communities in Lake Swarzędzkie after the first year of restoration. Arch. Pol. Fish. 2015, 23, 43–52. [Google Scholar] [CrossRef][Green Version]
- Kozak, A.; Rosińska, J.; Gołdyn, R. Changes in the phytoplankton structure due to prematurely limited restoration treatments. Pol. J. Environ. Stud. 2018, 27, 1097–1103. [Google Scholar] [CrossRef]
- Gołdyn, R.; Messyasz, B.; Domek, P.; Windhorst, W.; Hugenschmidt, C.; Nicoara, M.; Plavan, G. The response of Lake Durowskie ecosystem to restoration measures. Carpath. J. Earth Environ. 2013, 8, 43–48. [Google Scholar]
- Karthe, D.; Chalov, S.; Borchardt, D. Water resources and their management in central Asia in the early twenty-first century: Status, challenges, and future prospects. Environ. Earth Sci. 2015, 73, 487–499. [Google Scholar] [CrossRef]
- Grochowska, J.; Brzozowska, R.; Parszuto, K.; Tandyrak, R. Modifications in the trophic state of an urban lake, restored by different methods. J. Elem. 2017, 22, 43–53. [Google Scholar] [CrossRef]
- Grochowska, J.; Brzozowska, R.; Łopata, M.; Dunalska, J. The influence of restoration methods on the longevity of changes in the thermal and oxygen dynamics in degraded lake. Oceanol. Hydrobiol. Stud. 2015, 44, 18–27. [Google Scholar] [CrossRef]
- Jeppesen, E.; Meerhoff, M.; Jacobsen, B.; Hansen, R.; Sondergaard, M.; Jensen, J.; Lauridsen, T.; Mazzeo, N.; Branco, C. Restoration of shallow lakes by nutrient control and biomanipulation-the successful strategy varies with laek size and climate. Hydrobiologia 2007, 581, 269–285. [Google Scholar] [CrossRef]
- Hilt, S.; Gross, E.; Hupfer, M.; Morscheid, H.; Mahlmann, J.; Melzer, A.; Poltz, J.; Sandrock, S.; Scharf, E.; Schneider, S.; et al. Restoration of submerged vegetation in shallow eutrophic lakes—A guideline and state of the art in Germany. Limnologica 2006, 36, 155–171. [Google Scholar] [CrossRef]
- Nagabhatla, N.; Pattnaik, C.; Sellamuttu, S.; Prasad, S.; Wickramasuriya, R.; Finlayson, M. Investigation of aquaculture dynamics at a Ramsar site, using earth observation systems in conjunction with a socio-economic assessment. Lakes Reserv. Res. Manag. 2009, 14, 325–336. [Google Scholar] [CrossRef]
- Mohamed, H.; Negm, A.; Zahran, M.; Saavedra, O. Bathymetry determination from high resolution satellite imagery using ensemble learning algorithms in shallow lakes: Case study El-Burullus Lake. Int. J. Environ. Sci. Dev. 2016, 7, 295. [Google Scholar] [CrossRef]
- Lyzenga, D. Passive remote sensing techniques for mapping water depth and bottom features. Appl. Opt. 1978, 17, 379–383. [Google Scholar] [CrossRef]
- Loveland, T.; Irons, J. Landsat-8: The pland, the reality, and the legacy. Remote Sens. Environ. 2016, 185, 1–6. [Google Scholar] [CrossRef]
- Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 2017, 202, 18–27. [Google Scholar] [CrossRef]
- Dong, J.; Xiao, X.; Menarguez, M.; Zhang, G.; Qin, Y.; Biradar, T.D.C.; Moore, B., III. Mapping paddy rice planting area in northeastern Asia with Landsat 8 images, phenology-based algorithm and Google Earth Engine. Remote Sens. Environ. 2016, 185, 142–154. [Google Scholar] [CrossRef]
- Rao, K.N.; Krishna, G.M.; Malini, B. Kolleru lake is vanishing—A revelation through digital image processing of IRS-1D LISS III sensor data. Curr. Sci. 2004, 86, 1312–1316. [Google Scholar]
- Rao, A. Polycyclic Aromatic Hydrocarbons in Sediments from Kolleru Wetland in India. Bull. Environ. Contam. Toxicol. 2003, 70, 964–971. [Google Scholar] [CrossRef] [PubMed]
- Sekhar, K.; Chary, N.; Kamala, C.; Raj, S.; Rao, A. Fractionation studies and bioaccumulation of sediment-bound heavy metals in Kolleru lake by edible fish. Environ. Int. 2004, 29, 1001–1008. [Google Scholar] [CrossRef]
- Azeez, P.A.; Kumar, A.; Choudhury, B.C.; Sastry, V.N.K.; Upadhyay, S.; Reddy, K.M.; Rao, K.K. Report on the Proposal for Downsizing the Kolleru Wildlife Sanctuary (+5 to +3 Feet Contour); The Ministry of Environment and Forests Government of India: New Delhi, India, 2011. [Google Scholar]
- Barman, R.P. The fishes of the Kolleru Lake, Andhra Pradesh, India, with comments on their conservation. Rec. Zool. Sur. India 2004, 103, 83–89. [Google Scholar]
- Kolli, M.K.; Opp, C.; Groll, M. Mapping of potential groundwater recharge zones in the Kolleru lake Catchment, India, by using remote sensing and GIS techniques. Nat. Resour. 2020, 11, 127–145. [Google Scholar] [CrossRef][Green Version]
- Kolli, M.K.; Opp, C.; Groll, M. Identification of critical diffuse pollution sources in an ungauged catchment by using the SWAT model—A case study of Kolleru Lake, East Coast of India. AJGR 2020, 3, 53–68. [Google Scholar] [CrossRef]
- Kumar, K.C.V.; Demudu, G.; Hema, M.B.; Rao, K.N.; Kubo, S. Geospatial analysis of the changing environment of Kolleru lake, the largest freshwater wetland in India. Wetland 2016, 36, 745–758. [Google Scholar] [CrossRef]
- Jayanthi, M.; Rekha, P.N.; Kavitha, N.; Ravichandran, P. Assessment of impact of aquaculture on Kolleru Lake (India) using remote sensing and Geographical Information System. Aquac. Res. 2006, 37, 1617–1626. [Google Scholar] [CrossRef]
- Pattanaik, C.; Prasad, S.N.; Nagabhatla, N.; Sellamuthu, S.S. A case study of Kolleru Wetland (Ramsar site), India using remote sensing and GIS. IUP J. Earth Sci. 2010, 4, 70–77. [Google Scholar]
- Harikrishna, K.; Appala, R.N.; Venkateswara, R.V.; Jaisankar, G.; Amminedu, E. Land Use/Land Cover patterns in and around Kolleru Lake, Andhra Pradesh, India Using Remote Sensing and GIS Techniques. Int. J. Remote Sens. Geosci. 2013, 2, 2319–3484. [Google Scholar]
- Adhikari, S.; Ghosh, L.; Giri, B.; Ayyappan, S.S.; Ghosh, L.; Giri, B.; Ayyappan, S. Distributions of metals in the food web of fishponds of Kolleru Lake, India. Eotoxicol. Environ. Saf. 2009, 72, 1242–1248. [Google Scholar] [CrossRef]
- Amaraneni, S. Persistence of pesticides in water, sediment, and fish from fish farms in Kolleru Lake, India. J. Sci. Food Agric. 2002, 82, 918–923. [Google Scholar] [CrossRef]
- Sharma, S.; Sujatha, D.; Govil, P. Chemical and isotopic study of water and sediments from Kolleru Lake, Andhra Pradesh, India. Geochim. Cosmochim. Acta 2006, 70, A128. [Google Scholar] [CrossRef]
- Sreenivasa, R.; Pillala, R. The concentration of pesticides in sediments from Kolleru Lake in India. Pest. Manag. Sci. 2001, 57, 620–624. [Google Scholar] [CrossRef] [PubMed]
- Amaraneni, S. Distribution of pesticides, PAHs, and heavy metals in prawn ponds near Kolleru Lake wetland, India. Environ. Int. 2006, 32, 294–302. [Google Scholar] [CrossRef] [PubMed]
- Amaraneni, S.; Pillala, R. Concentrations of pesticide residues in tissues of fish from Kolleru Lake in India. Environ. Taxicol. 2001, 16, 550–556. [Google Scholar] [CrossRef]
- Huang, H.; Chen, Y.; Clinton, N.; Wang, J.; Wang, X.; Liu, C.; Gong, P.; Yang, J.; Bai, Y.; Zheng, Y.; et al. Mapping major land cover dynamics in Beijing using all Landsat images in Google Earth Engine. Remote Sens. Environ. 2017, 202, 166–176. [Google Scholar] [CrossRef]
- McFeeters, S. Using the Normalized Difference Water Index (NDWI) within a Geographic Information System to detect swimming pools for mosquito abatement: A practical approach. Remote Sens. 2013, 5, 3544–3561. [Google Scholar] [CrossRef]
- Wu, Q.; Lane, C.; Li, X.; Zhao, K.; Zhou, Y.; Clinton, N.; DeVries, B.; Golden, H.; Lang, M. Integrating LiDAR data and multi-temporal aerial imagery to map wetland inundation dynamics using Google Earth Engine. Remote Sens. Environ. 2019, 228, 1–13. [Google Scholar] [CrossRef]
- Gao, B. NDWI-A normalized difference water index for remote sensing of vegetation liquid water from space. Remote Sens. Environ. 1996, 58, 257–266. [Google Scholar] [CrossRef]
- Amani, M.; Mahdavi, S.; Afshar, M.; Briso, B.; Huang, W.; Mirzadeh, S.; White, L.; Banks, S.; Montgomery, J.; Hopkinson, C. Canadian wetland inventory using Google Earth Engine: The first map and premilinary results. Remote Sens. 2019, 11, 842. [Google Scholar] [CrossRef]
- Luscier, J.; Thompson, W.; Wilson, J.; Gorham, B.; Dragut, L. Using digital photographs and object-based image analysis to estimate percent ground cover in vegetation plots. Front. Ecol. Environ. 2006, 4, 408–413. [Google Scholar] [CrossRef]
- Sellamuttu, S.; Silva, S.D.; Nagabhatla, N.; Finlayson, C.; Pattanaik, C.; Prasad, N. The Ramsar Conventions wise use concept in theory and practice: An inter-disciplinary investigaion of practice in Kolleru lake, India. J. Int. Wildl. Law Policy 2012, 15, 228–250. [Google Scholar] [CrossRef]
Accuracy Assessment (1999) | |||||||
---|---|---|---|---|---|---|---|
Types | Urban | Paddy | Weed | Marshy Land | Lake Open Area | Fishponds | Producer’s Accuracy |
Urban | 126 | 6 | 0 | 5 | 2 | 8 | 85.71 |
Paddy | 3 | 2595 | 203 | 44 | 2 | 3 | 91.05 |
Weed | 0 | 231 | 1553 | 65 | 3 | 0 | 83.85 |
Marshy land | 0 | 67 | 71 | 1283 | 3 | 46 | 87.27 |
Lake open area | 7 | 8 | 11 | 63 | 21 | 21 | 16.03 |
Fishponds | 2 | 3 | 0 | 52 | 4 | 1548 | 96.21 |
Consumers accuracy | 91.30 | 89.17 | 84.49 | 84.85 | 60.01 | 95.20 | |
Overall accuracy: 88.42%, Kappa coefficient: 0.84 | |||||||
Accuracy Assessment (2008) | |||||||
Types | Urban | Paddy | Weed | Marshy Land | Lake Open Area | Fishponds | Producer’s Accuracy |
Urban | 76 | 2 | 0 | 0 | 0 | 0 | 97.43 |
Paddy | 6 | 758 | 38 | 20 | 0 | 1 | 92.10 |
Weed | 0 | 66 | 1007 | 23 | 0 | 0 | 91.87 |
Marshy land | 0 | 29 | 30 | 2069 | 1 | 19 | 96.32 |
Lake open area | 0 | 0 | 0 | 12 | 0 | 0 | 0 |
Fishponds | 0 | 0 | 0 | 16 | 0 | 2393 | 99.33 |
Consumers accuracy | 92.68 | 88.65 | 93.67 | 96.68 | 0 | 99.17 | |
Overall accuracy: 95.99%, Kappa coefficient: 0.94 | |||||||
Accuracy Assessment (2018) | |||||||
Types | Urban | Paddy | Weed | Marshy Land | Lake Open Area | Fishponds | Producer’s Accuracy |
Urban | 117 | 2 | 1 | 25 | 0 | 0 | 80.68 |
Paddy | 3 | 241 | 24 | 44 | 0 | 0 | 77.24 |
Weed | 0 | 12 | 1005 | 107 | 2 | 4 | 88.93 |
Marshy land | 12 | 32 | 127 | 1386 | 2 | 10 | 88.33 |
Lake open area | 1 | 1 | 4 | 16 | 32 | 0 | 59.25 |
Fishponds | 1 | 0 | 7 | 12 | 1 | 519 | 96.11 |
Consumers accuracy | 87.31 | 83.68 | 86.04 | 87.16 | 86.48 | 97.37 | |
Overall accuracy: 88%, Kappa coefficient: 0.82 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kolli, M.K.; Opp, C.; Karthe, D.; Groll, M. Mapping of Major Land-Use Changes in the Kolleru Lake Freshwater Ecosystem by Using Landsat Satellite Images in Google Earth Engine. Water 2020, 12, 2493. https://doi.org/10.3390/w12092493
Kolli MK, Opp C, Karthe D, Groll M. Mapping of Major Land-Use Changes in the Kolleru Lake Freshwater Ecosystem by Using Landsat Satellite Images in Google Earth Engine. Water. 2020; 12(9):2493. https://doi.org/10.3390/w12092493
Chicago/Turabian StyleKolli, Meena Kumari, Christian Opp, Daniel Karthe, and Michael Groll. 2020. "Mapping of Major Land-Use Changes in the Kolleru Lake Freshwater Ecosystem by Using Landsat Satellite Images in Google Earth Engine" Water 12, no. 9: 2493. https://doi.org/10.3390/w12092493
APA StyleKolli, M. K., Opp, C., Karthe, D., & Groll, M. (2020). Mapping of Major Land-Use Changes in the Kolleru Lake Freshwater Ecosystem by Using Landsat Satellite Images in Google Earth Engine. Water, 12(9), 2493. https://doi.org/10.3390/w12092493