# Multipurpose Use of Artificial Channel Networks for Flood Risk Reduction: The Case of the Waterway Padova–Venice (Italy)

^{1}

^{2}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Materials and Methods

#### 2.1. The Brenta–Bacchiglione River System

#### 2.1.1. The S. Gregorio-Piovego Flood Canal and the Voltabarozzo Control Structure

#### 2.2. The Padova–Venezia Waterway

#### 2.2.1. Some Historical Notes

#### 2.2.2. The Waterway Padova–Venice as a Flood Mitigation Structure

#### 2.3. The 2DEF Hydrodynamic Model

**q**= (q

_{x}, q

_{y}) is the depth-integrated flow velocity (i.e., discharge per unit width), and ∇∙

**q**is its 2D divergence. The term ϑ(η) is a depth-dependent storage coefficient defined as the ratio between the wet and the total area of a cell, for a given water surface elevation, η, that allows for a smooth wet–dry transition [34,36,37]; r is a source term accounting for possibly contributions of rainfall or infiltration [34].

**τ**= (τ

_{x}, τ

_{y}) is the bottom shear stress, ρ is the water density. The model evaluates the depth-integrated horizontal dispersion stresses,

**Re**= (Re

_{x}, Re

_{y}), using the Boussinesq approximation [38], and the eddy viscosity computed according to Uittenbogaard and van Vossen [39]. Note that the local and advective accelerations are lumped into the material time derivative of the depth-averaged velocity. According to the so-called mixed Eulerian–Lagrangian methods, the material time derivative is replaced by its finite difference formulation, using the method of characteristics [40,41,42]:

_{r}is the channel discharge reduced by the amount of flow rate already accounted for by the 2D computational elements possibly overlying the 1D channel element [43], A is the cross-sectional area, and R

_{H}is the hydraulic radius.

**q**using variables known at the previous time step, where necessary [37,40,45], to form a semi-implicit numerical scheme that is stable regardless of the celerity of the depth-averaged gravitational waves [42]. Given that the water level, η, is assumed to be piecewise linear, and continuous across the domain, and owing to linearization, the resulting scheme is particularly efficient and accurate in modeling subcritical flows, whereas it is not suitable to deal with rapidly varying flows [49,50], nor with large patches of supercritical flows or shock waves [51,52,53,54,55,56].

#### 2.4. The Computational Domain

#### Schematization of the Waterway

^{1/3}/s, by hypothesizing a poor riverbed maintenance. The multi-gate intake structure, located in the left bank of the Brenta River, is equipped with two 20 m wide sluice gates, located at the bottom level of 6 m a.s.l., and aimed to control the maximum flow-rate discharged through the waterway (Figure 3b).

## 3. Results and Discussion

#### 3.1. The Role of Waterway as Diversion Canal: Steady-Flow Preliminary Analysis

#### 3.2. The Role of Waterway as a Diversion Canal: Real Flood Waves Routing

#### 3.3. Additional Considerations

## 4. Conclusions

## Author Contributions

## Funding

## Conflicts of Interest

## References

- European Environmental Agency. Mapping the Impacts of Natural Hazards and Technological Accidents in Europe; European Environmental Agency: Kobenhavn, Denmark, 2010. [Google Scholar]
- Arnell, N.W.; Gosling, S.N. The impacts of climate change on river flood risk at the global scale. Clim. Chang.
**2016**, 134, 387–401. [Google Scholar] [CrossRef][Green Version] - Ward, P.J.; Jongman, B.; Aerts, J.C.J.H.; Bates, P.D.; Botzen, W.J.W.; Diaz Loaiza, A.; Hallegatte, S.; Kind, J.M.; Kwadijk, J.; Scussolini, P.; et al. A global framework for future costs and benefits of river-flood protection in urban areas. Nat. Clim. Chang.
**2017**, 7, 642–646. [Google Scholar] [CrossRef] - Dottori, F.; Szewczyk, W.; Ciscar, J.-C.; Zhao, F.; Alfieri, L.; Hirabayashi, Y.; Bianchi, A.; Mongelli, I.; Frieler, K.; Betts, R.A.; et al. Increased human and economic losses from river flooding with anthropogenic warming. Nat. Clim. Chang.
**2018**, 8, 781–786. [Google Scholar] [CrossRef] - Orlandini, S.; Moretti, G.; Albertson, J.D. Evidence of an emerging levee failure mechanism causing disastrous floods in Italy. Water Resour. Res.
**2015**, 51, 7995–8011. [Google Scholar] [CrossRef][Green Version] - Slater, L.J. To what extent have changes in channel capacity contributed to flood hazard trends in England and Wales? Earth Surf. Process. Landf.
**2016**, 41, 1115–1128. [Google Scholar] [CrossRef][Green Version] - Vacondio, R.; Aureli, F.; Ferrari, A.; Mignosa, P.; Dal Palù, A. Simulation of the January 2014 flood on the Secchia river using a fast and high-resolution 2D parallel shallow-water numerical scheme. Nat. Hazards
**2016**, 80, 103–125. [Google Scholar] [CrossRef] - Viero, D.P.; D’Alpaos, A.; Carniello, L.; Defina, A. Mathematical modeling of flooding due to river bank failure. Adv. Water Resour.
**2013**, 59, 82–94. [Google Scholar] [CrossRef] - Kundzewicz, Z.W.; Kanae, S.; Seneviratne, S.I.; Handmer, J.; Nicholls, N.; Peduzzi, P.; Mechler, R.; Bouwer, L.M.; Arnell, N.; Mach, K.; et al. Flood risk and climate change: Global and regional perspectives. Hydrol. Sci. J.
**2014**, 59, 1–28. [Google Scholar] [CrossRef][Green Version] - Slater, L.J.; Singer, M.B.; Kirchner, J.W. Drivers of flood hazard. Geophys. Res. Lett.
**2015**, 42, 370–376. [Google Scholar] [CrossRef][Green Version] - Slater, L.J.; Villarini, G. Recent trends in U.S. flood risk. Geophys. Res. Lett.
**2016**, 43, 12428–12436. [Google Scholar] [CrossRef][Green Version] - Viero, D.P.; Roder, G.; Matticchio, B.; Defina, A.; Tarolli, P. Floods, landscape modifications and population dynamics in anthropogenic coastal lowlands: The Polesine (northern Italy) case study. Sci. Total Environ.
**2019**, 651, 1435–1450. [Google Scholar] [CrossRef] [PubMed] - Rayment, M.; Conway, M.; Batrakova, S.; McNeil, D.; Christie, M.; Remoundou, K. Estimating the Impact on Public Benefits from Changes in Investment in the Environment Agency Waterways; Technical Report; ICF GHK: London, UK, 2014. [Google Scholar]
- Galil, B.S.; Nehring, S.; Panov, V. Waterways as invasion highways-impact of climate change and globalization. In Biological Invasions; Springer: Berlin/Heidelberg, Germany, 2007; pp. 59–74. [Google Scholar]
- Rose, C.B.; Walker, L. Inland waterway systems-a solution to drought and flooding issues. In Water Resources in the Built Environment; John Wiley & Sons Ltd.: Chichester, UK, 2014; pp. 180–195. [Google Scholar]
- Ionescu, R.-V. Inland waterways’ importance for the European economy. Case study: Romanian inland Waterways transport. J. Danub. Stud. Res.
**2016**, 6, 207–2019. [Google Scholar] - Martini, P.; Carniello, L.; Avanzi, C. Two dimensional modelling of flood flows and suspended sedimenttransport: The case of the Brenta river, Veneto (Italy). Nat. Hazards Earth Syst. Sci.
**2004**, 4, 165–181. [Google Scholar] [CrossRef][Green Version] - Zanetti, P.G. Acque di Padova. 150 Anni del Canale Scaricatore; Cierre Editore: Verona, Italy, 2013; ISBN 9788883147265. [Google Scholar]
- Mazzoleni, M.; Verlaan, M.; Alfonso, L.; Monego, M.; Norbiato, D.; Ferri, M.; Solomatine, D.P. Can assimilation of crowdsourced data in hydrological modelling improve flood prediction? Hydrol. Earth Syst. Sc.
**2017**, 21, 839–861. [Google Scholar] [CrossRef][Green Version] - Viero, D.P. Comment on “Can assimilation of crowdsourced data in hydrological modelling improve flood prediction?” by Mazzoleni et al. (2017). Hydrol. Earth Syst. Sci.
**2018**, 22, 171–177. [Google Scholar] [CrossRef][Green Version] - Mozzi, P.; Piovan, S.; Rossato, S.; Cucato, M.; Abbà, T.; Fontana, A. Palaeohydrography and early settlements in Padua (Italy). Quat. Ital. J. Quat. Sci.
**2010**, 23, 387–400. [Google Scholar] - Prosdocimi, M.; Fontana, D.G.; Tarolli, P.; Giupponi, C.; Bojovic, D. Pilot Activities in Brenta River Basin (Italy); Technical Report; University of Padua, Department Tesaf, Veneto Region, Cà Foscari University of Venice, Department of Economics: Venice, Italy, 2014. [Google Scholar]
- Moretto, J.; Delai, F.; Lenzi, M.A. Hybrid DTMS derived by lidar and colour bathymetry for assessing fluvial geomorphic changes after flood events in gravel-bed rivers (Tagliamento, Piave and Brenta rivers, Italy). Int. J. Saf. Secur. Eng.
**2013**, 3, 128–140. [Google Scholar] [CrossRef] - D’Alpaos, L. Fatti e Misfatti di Idraulica Lagunare. La Laguna di Venezia Dalla Diversione dei Fiumi Alle Nuove Opere Alle Bocche di Porto; Istituto Veneto di SS.LL.AA., Memorie, Classe di Scienze Fisiche, Matematiche e Naturali: Venezia, Italy, 2010; Volume 44. [Google Scholar]
- Mel, R.; Viero, D.P.; Carniello, L.; D’Alpaos, L. Optimal floodgate operation for river flood management: The case study of Padova (Italy). J. Hydrol. Reg. Stud. accepted.
- Alfieri, L.; Bisselink, B.; Dottori, F.; Naumann, G.; de Roo, A.; Salamon, P.; Wyser, K.; Feyen, L. Global projections of river flood risk in a warmer world. Earth’s Futur.
**2017**, 5, 171–182. [Google Scholar] [CrossRef] - Blöschl, G.; Hall, J.; Viglione, A.; Perdigão, R.A.P.; Parajka, J.; Merz, B.; Lun, D.; Arheimer, B.; Aronica, G.T.; Bilibashi, A.; et al. Changing climate both increases and decreases European river floods. Nature
**2019**, 573, 108–111. [Google Scholar] [CrossRef] - Mel, R.; Sterl, A.; Lionello, P. High resolution climate projection of storm surge at the Venetian coast. Nat. Hazards Earth Syst. Sci.
**2013**, 13, 1135–1142. [Google Scholar] [CrossRef][Green Version] - Miller, J.D.; Hutchins, M. The impacts of urbanisation and climate change on urban flooding and urban water quality: A review of the evidence concerning the United Kingdom. J. Hydrol. Reg. Stud.
**2017**, 12, 345–362. [Google Scholar] [CrossRef][Green Version] - Pijl, A.; Brauer, C.C.; Sofia, G.; Teuling, A.J.; Tarolli, P. Hydrologic impacts of changing land use and climate in the Veneto lowlands of Italy. Anthropocene
**2018**, 22, 20–30. [Google Scholar] [CrossRef] - Sofia, G.; Tarolli, P. Hydrological Response to~30 years of agricultural surface water management. Land
**2017**, 6, 3. [Google Scholar] [CrossRef][Green Version] - D’Alpaos, L.; Defina, A. Venice Lagoon Hydrodynamics Simulation by Coupling 2D and 1D Finite Element Models, Proceedings of the 8th Conference on Finite Elements in Fluids in New Trends and Applications, Barcelona, Spain, 20–24 September 1993; Morgan, K., Onate, E., Periaux, J., Peraire, J., Zienkiewicz, O., Eds.; Pineridge Press: Barcelona, Spain, 1993; pp. 20–24. [Google Scholar]
- Defina, A.; D’Alpaos, L.; Matticchio, B. A new set of equations for very shallow water and partially dry areas suitable to 2D numerical models. In Modelling Flood Propagation Over Initially Dry Areas; Molinaro, P., Natale, L., Eds.; American Society of Civil Engineers: New York, NY, USA, 1994; pp. 72–81. [Google Scholar]
- Viero, D.P.; Peruzzo, P.; Carniello, L.; Defina, A. Integrated mathematical modeling of hydrological and hydrodynamic response to rainfall events in rural lowland catchments. Water Resour. Res.
**2014**, 50, 5941–5957. [Google Scholar] [CrossRef][Green Version] - Viero, D.P.; Defina, A. Water age, exposure time, and local flushing time in semi-enclosed, tidal basins with negligible freshwater inflow. J. Mar. Syst.
**2016**, 156, 16–29. [Google Scholar] [CrossRef] - Defina, A. Two-dimensional shallow flow equations for partially dry areas. Water Resour. Res.
**2000**, 36, 3251. [Google Scholar] [CrossRef][Green Version] - Viero, D.P. Modelling urban floods using a finite element staggered scheme with an anisotropic dual porosity model. J. Hydrol.
**2019**, 568, 247–259. [Google Scholar] [CrossRef][Green Version] - Stansby, P.K. A mixing-length model for shallow turbulent wakes. J. Fluid Mech.
**2003**, 495, 369–384. [Google Scholar] [CrossRef] - Uittenbogaard, R.; van Vossen, B. Subgrid-scale model for quasi-2D turbulence in shallow water. In Shallow Flows; Taylor & Francis: Abingdon, UK, 2004; pp. 575–582. [Google Scholar]
- Defina, A. Numerical experiments on bar growth. Water Resour. Res.
**2003**, 39, 1–12. [Google Scholar] [CrossRef] - Giraldo, F.X. The Lagrange-Galerkin method for the two-dimensional shallow water equations on adaptive grids. Int. J. Numer. Meth. Fl.
**2000**, 33, 789–832. [Google Scholar] [CrossRef] - Walters, R.A.; Casulli, V. A robust, finite element model for hydrostatic surface water flows. Commun. Numer. Meth. Engng.
**1998**, 14, 931–940. [Google Scholar] [CrossRef] - D’Alpaos, L.; Defina, A.; D’Alpaos, L.; Defina, A. Mathematical modeling of tidal hydrodynamics in shallow lagoons: A review of open issues and applications to the Venice Lagoon. Comput. Geosci.
**2007**, 33, 476–496. [Google Scholar] [CrossRef] - Cunge, J.A.; Wegner, M. Numerical integration of Barré de Saint-Venant’s flow equations by means of an implicite scheme of finite differences. Houille Blanche
**1964**, 1, 33–39. [Google Scholar] [CrossRef][Green Version] - Viero, D.P.; Valipour, M. Modeling anisotropy in free-surface overland and shallow inundation flows. Adv. Water Resour.
**2017**, 104, 1–14. [Google Scholar] [CrossRef] - D’Alpaos, L.; Defina, A.; Matticchio, B. A Coupled 2D and 1D Finite Element Model for Simulating Tidal Flow in the Venice Channel Network, Proceedings of the Ninth International Conference on Finite Elements in Fluids New Trends and Applications, Venezia, Italy, 15–21 October 1995; Morandi Cecchi, M., Morgan, K., Periaux, J., Schrefler, B.A., Zienkiewicz, O.C., Eds.; SM Legatoria: Venezia, Italy, 1995; pp. 1397–1406. [Google Scholar]
- Viero, D.P.; Defina, A. Extended theory of hydraulic hysteresis in open-channel flow. J. Hydraul. Eng.
**2017**, 143, 06017014. [Google Scholar] [CrossRef][Green Version] - Viero, D.P.; Defina, A. Multiple states in the flow through a sluice gate. J. Hydraul. Res.
**2019**, 57, 39–50. [Google Scholar] [CrossRef][Green Version] - Viero, D.P.; Peruzzo, P.; Defina, A. Positive surge propagation in sloping channels. Water
**2017**, 9, 518. [Google Scholar] [CrossRef] - Viero, D.P.; Defina, A. Consideration of the mechanisms for tidal bore formation in an idealized planform geometry. Water Resour. Res.
**2018**, 54, 5670–5686. [Google Scholar] [CrossRef][Green Version] - Defina, A.; Susin, F.M.; Viero, D.P. Numerical study of the Guderley and Vasilev reflections in steady two-dimensional shallow water flow. Phys. Fluids
**2008**, 20. [Google Scholar] [CrossRef][Green Version] - Defina, A.; Susin, F.M.; Viero, D.P. Bed friction effects on the stability of a stationary hydraulic jump in a rectangular upward sloping channel. Phys. Fluids
**2008**, 20. [Google Scholar] [CrossRef][Green Version] - Defina, A.; Viero, D.P. Open channel flow through a linear contraction. Phys. Fluids
**2010**, 22. [Google Scholar] [CrossRef] - Guinot, V. Multiple porosity shallow water models for macroscopic modelling of urban floods. Adv. Water Resour.
**2012**, 37, 40–72. [Google Scholar] [CrossRef] - Viero, D.P.; Susin, F.M.; Defina, A. A note on weak shock wave reflection. Shock Waves
**2013**, 23, 505–511. [Google Scholar] [CrossRef] - Ferrari, A.; Viero, D.P. Floodwater pathways in urban areas: A method to compute porosity fields for anisotropic subgrid models in differential form. J. Hydrol. under review.
- Viero, D.P.; Lopez Dubon, S.; Lanzoni, S. Chute cutoffs in meandering rivers: Formative mechanisms and hydrodynamic forcing. In Fluvial Meanders and Their Sedimentary Products in the Rock Record (IAS SP 48); Ghinassi, M., Colombera, L., Mountney, N., Reesink, A.J.H., Eds.; John Wiley & Sons: Hoboken, NJ, USA, 2018; pp. 201–230. [Google Scholar]
- Marani, M.; D’Alpaos, A.; Lanzoni, S.; Carniello, L.; Rinaldo, A. Biologically-controlled multiple equilibria of tidal landforms and the fate of the Venice lagoon. Geophys. Res. Lett.
**2007**, 34, L11402. [Google Scholar] [CrossRef] - Carniello, L.; Defina, A.; D’Alpaos, L. Morphological evolution of the Venice lagoon: Evidence from the past and trend for the future. J. Geophys. Res.
**2009**, 114, F04002. [Google Scholar] [CrossRef] - Bendoni, M.; Mel, R.; Solari, L.; Lanzoni, S.; Francalanci, S.; Oumeraci, H. Insights into lateral marsh retreat mechanism through localized field measurements. Water Resour. Res.
**2016**, 52, 1446–1464. [Google Scholar] [CrossRef][Green Version] - Sarretta, A.; Pillon, S.; Molinaroli, E.; Guerzoni, S.; Fontolan, G. Sediment budget in the lagoon of Venice, Italy. Cont. Shelf Res.
**2010**, 30, 934–949. [Google Scholar] [CrossRef][Green Version] - Tommasini, L.; Carniello, L.; Ghinassi, M.; Roner, M.; D’Alpaos, A. Changes in the wind-wave field and related salt-marsh lateral erosion: Inferences from the evolution of the Venice lagoon in the last four centuries. Earth Surf. Process. Landf.
**2019**, 44, 1633–1646. [Google Scholar] [CrossRef] - Rinaldo, A.; Nicótina, L.; Alessi Celegon, E.; Beraldin, F.; Botter, G.; Carniello, L.; Cecconi, G.; Defina, A.; Settin, T.; Uccelli, A.; et al. Sea level rise, hydrologic runoff, and the flooding of Venice. Water Resour. Res.
**2008**, 44. [Google Scholar] [CrossRef][Green Version] - Mel, R.; Carniello, L.; D’Alpaos, L. Addressing the effect of the Mo.S.E. barriers closure on wind setup within the Venice lagoon. Estuar. Coast. Shelf Sci.
**2019**, 225, 106249. [Google Scholar] [CrossRef] - Mel, R.; Carniello, L.; D’Alpaos, L. Dataset of wind setup in a regulated Venice lagoon. Data Br.
**2019**, 26, 104386. [Google Scholar] [CrossRef] - Mel, R.; Viero, D.P.; Carniello, L.; Defina, A.; D’Alpaos, L. Simplified methods for real-time prediction of storm surge uncertainty: The city of Venice case study. Adv. Water Resour.
**2014**, 71, 177–185. [Google Scholar] [CrossRef] - Mel, R.; Lionello, P. Probabilistic dressing of a storm surge prediction in the Adriatic sea. Adv. Meteorol.
**2016**, 2016, 1–8. [Google Scholar] [CrossRef][Green Version] - Chen, C.; Liu, H.; Beardsley, R.C. An Unstructured grid, finite-volume, three-dimensional, primitive equations ocean model: Application to coastal ocean and estuaries. J. Atmos. Ocean. Technol.
**2003**, 20, 159–186. [Google Scholar] [CrossRef]

**Figure 1.**The Brenta–Bacchiglione river network from Padova to the Adriatic Sea. The yellow line represents the Bacchiglione River; the green line is the Roncajette River, which originates from the Voltabarozzo control structure (VCS); the cyan line is the Brenta River, with its lowland tributary, the Muson dei Sassi River; the blue line is the Waterway Padova–Venice (in light blue the segment already built, in dark blue the segment that is still to be completed). The black points represent the Voltabarozzo control structure (VCS) and the waterway intake structure (WIS).

**Figure 2.**Definition of the five hydraulic risk classes in four branches of the Brenta–Bacchiglione river network—flow rate in the Roncajette River; water level upstream of the VCS; flow rate in the Brenta River downstream of the WIS; and minimum levee freeboard along the S. Gregorio-Piovego (SGP) Canal.

**Figure 3.**(

**a**) Domain of the study and the computational mesh used to model flood propagation in the Brenta–Bacchiglione river network. Violet points denote the inflow boundary conditions; green points are the hydraulic facilities (the Voltabarozzo control structure, VCS, and the waterway intake structure, WIS); the blue point locates the mouth of the Brenta in the Adriatic Sea at Brondolo. (

**b**) Details of the waterway intake structure (WIS).

**Figure 4.**Maximum flow rates that can be conveyed through the SGP Canal into the Brenta River (i.e., gates of the Scaricatore facility were completely open) as a function of the flow rates in the Brenta River. Brown lines represent the current condition, blue lines represent the effect of using the waterway of Padova–Venice as a diversion canal. Different set of lines refer to different water level upstream of the VCS; red circles denote the maximum discharge through the SGP Canal for which the levees are not overtopped.

**Figure 5.**The role of the waterway in reducing the water levels in the SGP Canal and in the Brenta River, under steady flow conditions. Examples with water level upstream of the VCS of 12 m a.s.l. and flow rates in the Brenta River, Q

_{BR}, of 800 and 1200 m³/s. Brown line is the bed elevation; grey lines are the elevation of the lower levee. (

**a**) Water levels along the SGP Canal from the VCS to the confluence of Piovego–Brenta; and (

**b**) water levels in the Brenta River from the Limena to the WIS.

**Figure 6.**Simulation of the 01–10 November 2011 flood event. Comparisons between flow rates computed, without (current conditions, dark colors, thin lines) and with (light colors, thick lines), the use of the waterway as a diversion canal. Black lines represent the flow rates upstream of Padova. The waterway allows—(

**a**) reducing the flow rates in the Roncajette River, (

**b**) increasing the flow rates of the Bacchiglione River that the SGP Canal could divert to the Brenta River (green lines), (

**c**) increasing the flow rates of the Brenta River between the confluence of Piovego–Brenta and the WIS (blue lines) without increasing the water levels, and (

**d**) flattening the flood hydrograph of the Brenta River downstream of the WIS.

**Figure 7.**Effect of the waterway as a diversion canal on hydraulic risk in the Brenta–Bacchiglione river network. The number of hours (bold numbers) spent in each of the risk classes defined in Section 2.1.1, using (W) and without using (NW) the Waterway as diversion canal, for the Roncajette River (

**a**) and for the Brenta River downstream of the WIS (

**b**). Histogram bars are normalized with respect to the case of no waterway use.

**Table 1.**List of flood events in the period of 2008–2017 selected for studying the effectiveness of the waterway as a flood canal for the Brenta–Bacchiglione river network.

n of Event | Begin | End |
---|---|---|

1 | 2 February 2009 | 10 February 2009 |

2 | 22 April 2009 | 2 May 2009 |

3 | 18 December 2010 | 28 December 2010 |

4 | 1 November 2011 | 10 November 2011 |

5 | 11 May 2013 | 21 May 2013 |

6 | 25 January 2014 | 8 February 2014 |

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Mel, R.A.; Viero, D.P.; Carniello, L.; D’Alpaos, L. Multipurpose Use of Artificial Channel Networks for Flood Risk Reduction: The Case of the Waterway Padova–Venice (Italy). *Water* **2020**, *12*, 1609.
https://doi.org/10.3390/w12061609

**AMA Style**

Mel RA, Viero DP, Carniello L, D’Alpaos L. Multipurpose Use of Artificial Channel Networks for Flood Risk Reduction: The Case of the Waterway Padova–Venice (Italy). *Water*. 2020; 12(6):1609.
https://doi.org/10.3390/w12061609

**Chicago/Turabian Style**

Mel, Riccardo Alvise, Daniele Pietro Viero, Luca Carniello, and Luigi D’Alpaos. 2020. "Multipurpose Use of Artificial Channel Networks for Flood Risk Reduction: The Case of the Waterway Padova–Venice (Italy)" *Water* 12, no. 6: 1609.
https://doi.org/10.3390/w12061609