Modeling and Practice of Erosion and Sediment Transport under Change
Abstract
:1. Keywords of the Special Issue
2. Erosion and Sediment Transport
3. Modeling and Practice
4. Climatological and Anthropogenic Changes
5. Summary of the Special Issue
6. Establishment of the Special Issue
7. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Foster, G.R.; Meyer, L.D. A Closed-Form Soil Erosion Equation for Upland Areas. In Sedimentation Symposium in Honor Prof. H.A. Einstein; Shen, H.W., Ed.; Colorado State University: Fort Collins, CO, USA, 1972; pp. 12.1–12.19. [Google Scholar]
- Prowse, T.D. Suspended sediment concentration during breakup. Can. J. Civ. Eng. 1993, 20, 872–875. [Google Scholar] [CrossRef]
- Costar, F.; Dupeyrat, L.; Gautier, E.; Carey-Gailhardis, E. Fluvial thermal erosion investigations along a rapidly eroding river bank: Applications to the Lena River (Central Siberia). Earth Surf. Process. Landf. 2003, 28, 1349–1359. [Google Scholar] [CrossRef]
- Knack, I.M.; Shen, H.T. A numerical model for sediment transport and bed change with river ice. J. Hydraul. Res. 2018, 56, 844–856. [Google Scholar] [CrossRef]
- Burrell, B.C.; Beltaos, S. Effects and implications of river ice breakup on suspended-sediment concentrations: A synthesis. In Proceedings of the CGU HS Committee on River Ice Processes and the Environment 20th Workshop on the Hydraulics of Ice-Covered Rivers, Ottawa, ON, Canada, 14–16 May 2019. [Google Scholar]
- ASCE Task Committee. Sediment sources and sediment yields. ASCEJ. Hydraul. Div. 1970, 96, 1283–1329. [Google Scholar]
- Kuznetsov, M.S.; Gendugov, V.M.; Khalilov, M.S.; Ivanuta, A.A. An equation of soil detachment by flow. Soil Tillage Res. 1998, 46, 97–102. [Google Scholar] [CrossRef]
- Emmett, W.W. The Hydraulics of Overland Flow on Hillslopes; USGS (United States Geological Survey): Washington, DC, USA, 1970; Volume 662A, 68p. [Google Scholar]
- Bennett, J.P. Concepts of mathematical modeling of sediment yield. Water Resour. Res. 1974, 10, 485–492. [Google Scholar] [CrossRef]
- Croley, I.I. TE Unsteady overland sedimentation. J. Hydrol. 1982, 56, 325–346. [Google Scholar] [CrossRef]
- Phien, H.N.; Arbhabhirama, A. A statistical analysis of the sediment accumulation in reservoirs. J. Hydrol. 1979, 44, 231–240. [Google Scholar] [CrossRef]
- Skoklevski, Z.; Velickov, S. Suspended load transportation process within Vardar river basin in the Republic of Macedonia. In Proceedings of the XIXth conference Danube Countries on the Hydrological Forecasting and Hydrological Bases of Water Management, Osijek, Croatia, 15–19 June 1998; pp. 717–727. [Google Scholar]
- Tingsanchali, T.; Lal, N.K. A combined deterministic-stochastic model of daily sediment concentrations in a river. In Proceedings of the Sixth IAHR International Symposium Stochastic Hydraulics, Taipei, Taiwan, 18–20 May 1992; pp. 221–228. [Google Scholar]
- Rosen, T.; Xu, Y.J. A hydrograph-based sediment availability assessment: Implications for Mississippi River sediment diversion. Water 2014, 6, 564–583. [Google Scholar] [CrossRef]
- Bogardi, J. Sediment Transport in Alluvial Streams; Akademiai Kiado: Budapest, Hungary, 1974. [Google Scholar]
- Box, G.E.P.; Jenkins, G.M.; Reinsel, G.C. Time Series Analysis, Forecasting and Control; Prentice-Hall: Englewood Cliffs, NJ, USA, 1994. [Google Scholar]
- Szidarovszky, F.; Yakowitz, S.; Krzysztofowicz, R. A Bayes approach for simulating sediment yield. J. Hydrol. Sci. 1976, 3, 33–44. [Google Scholar]
- Phien, H.N. Reservoir sedimentation with correlated inflows. J. Hydrol. 1981, 53, 327–341. [Google Scholar] [CrossRef]
- Aksoy, H.; Akar, T.; Unal, N.E. Wavelet analysis for modeling suspended sediment discharge. Nord. Hydrol. 2004, 35, 165–174. [Google Scholar] [CrossRef]
- Hao, C.F.; Qiu, J.; Li, F.F. Methodology for analyzing and predicting the runoff and sediment into a reservoir. Water 2017, 9, 440. [Google Scholar] [CrossRef]
- Garde, R.J.; Ranga Raju, K.G. Mechanics of Sediment Transportation and Alluvial Stream Problems; Wiley Eastern: New Delhi, India, 1977. [Google Scholar]
- Tfwala, S.S.; Wang, Y.M. Estimating sediment discharge using sediment rating curves and artificial neural networks in the Shiwen River, Taiwan. Water 2016, 8, 53. [Google Scholar] [CrossRef]
- Araujo, J.C.; Güntner, A.; Bronstert, A. Loss of reservoir volume by sediment deposition and its impact on water availability in semiarid Brazil. Hydrol. Sci. J. 2006, 51, 157–170. [Google Scholar] [CrossRef]
- Baban, S.M.J.; Yusof, K.W. Modeling soil erosion in tropical environments using remote sensing and geographical information systems. Hydrol. Sci. J. 2001, 46, 191–198. [Google Scholar] [CrossRef]
- Wicks, J.M. Physically-Based Mathematical Modelling of Catchment Sediment Yield. Ph.D. Thesis, Department of Civil Engineering, University of Newcastle Upon Tyne, Tyne, UK, 1988. [Google Scholar]
- Nearing, M.A.; Foster, G.R.; Lane, L.J.; Finkner, S.C. A process-based soil erosion model for USDA-water erosion prediction project technology. Trans. ASAE 1989, 32, 1587–1593. [Google Scholar] [CrossRef]
- Ayele, G.T.; Teshale, E.Z.; Yu, B.; Rutherfurd, I.D.; Jeong, J. Streamflow and sediment yield prediction for watershed prioritization in the Upper Blue Nile river basin, Ethiopia. Water 2017, 9, 782. [Google Scholar] [CrossRef]
- Kavvas, M.L.; Chen, Z.Q.; Dogrul, C.; Yoon, J.Y.; Ohara, N.; Liang, L.; Aksoy, H.; Anderson, M.L.; Yoshitani, J.; Fukami, K.; et al. Watershed environmental hydrology (WEHY) model based on upscaled conservation equations: Hydrologic module. ASCE J. Hydrol. Eng. 2004, 9, 450–464. [Google Scholar] [CrossRef]
- Kavvas, M.L.; Yoon, J.Y.; Chen, Z.Q.; Liang, L.; Dogrul, C.; Ohara, N.; Aksoy, H.; Anderson, M.L.; Reuter, J.; Hackley, S. Watershed environmental hydrology model: Environmental module and its application to a California watershed. ASCE J. Hydrol. Eng. 2006, 11, 261–272. [Google Scholar] [CrossRef]
- Aksoy, H.; Kavvas, M.L. A review of hillslope and watershed scale erosion and sediment transport models. Catena 2005, 64, 247–271. [Google Scholar] [CrossRef]
- Merritt, W.S.; Letcher, R.A.; Jakeman, A.J. A review of erosion and sediment transport models. Environ. Model. Softw. 2003, 18, 761–799. [Google Scholar] [CrossRef]
- Milly, P.C.D.; Betancourt, J.; Falkenmark, M.; Hirsch, R.M.; Kundzewicz, Z.W.; Lettenmaier, D.P.; Stouffer, R.J. Stationarity is dead: Whither water management? Science 2008, 319, 573–574. [Google Scholar] [CrossRef]
- Montanari, A.; Young, G.; Savenije, H.H.G.; Hughes, D.; Wagener, T.; Ren, L.L.; Koutsoyiannis, D.; Cudennec, C.; Toth, E.; Grimaldi, S.; et al. Panta Rhei-Everything Flows: Change in hydrology and society-The IAHS Scientific Decade 2013–2022. Hydrol. Sci. J. 2013, 58, 1256–1275. [Google Scholar] [CrossRef]
- McMillan, H.; Montanari, A.; Cudennec, C.; Savenjie, H.; Kreibich, H.; Krüger, T.; Liu, J.; Meija, A.; van Loon, A.; Aksoy, H.; et al. PantaRhei 2013-2015: Global perspectives on hydrology, society and change. Hydrol. Sci. J. 2016, 61, 1174–1191. [Google Scholar] [CrossRef]
- Ceola, S.; Montanari, A.; Krueger, T.; Dyer, F.; Kreibich, H.; Westerberg, I.; Carr, G.; Cudennec, C.; Elshorbagy, A.; Savenije, H.; et al. Adaptation of water resources systems to changing society and environment: A statement by the International Association of Hydrological Sciences. Hydrol. Sci. J. 2016, 61, 2803–2817. [Google Scholar] [CrossRef]
- Bu, J.; Lu, C.; Niu, J.; Gao, Y. Attribution of runoff reduction in the Juma River basin to climate variation, direct human intervention, and land use change. Water 2018, 10, 1775. [Google Scholar] [CrossRef]
- Koutsoyiannis, D. Hurst-Kolmogorov dynamics and uncertainty. J. Am. Water Resour. Assoc. 2011, 47, 481–495. [Google Scholar] [CrossRef]
- Lins, H.F.; Cohn, T.A. Stationarity: Wanted dead or alive? J. Am. Water Resour. Assoc. 2011, 47, 475–480. [Google Scholar] [CrossRef]
- Matalas, N.C. Comment on the announced death of stationarity. J. Water Resour. Plann. Manag. 2012, 138, 311–312. [Google Scholar] [CrossRef]
- Koutsoyiannis, D.; Montanari, A. Negligent killing of scientific concepts: The stationarity case. Hydrol. Sci. J. 2015, 60, 1174–1183. [Google Scholar] [CrossRef]
- Grimaldi, S.; Kao, S.-C.; Castellarin, A.; Papalexiou, S.-M.; Viglione, A.; Laio, F.; Aksoy, H.; Gedikli, A. Statistical Hydrology, Treatise on Water Science; Wilderer, P., Ed.; Academic Press: Oxford, UK, 2011; Volume 2, pp. 479–517. [Google Scholar]
- Gedikli, A.; Aksoy, H.; Unal, N.E. Segmentation algorithm for long time series analysis. Stoch. Environ. Res. Risk Assess. 2007, 22, 291–302. [Google Scholar] [CrossRef]
- Aksoy, H.; Gedikli, A.; Unal, N.E.; Kehagias, A. Fast segmentation algorithms for long hydrometeorological time series. Hydrol. Process. 2008, 22, 4600–4608. [Google Scholar] [CrossRef]
- Gedikli, A.; Aksoy, H.; Unal, N.E.; Kehagias, A. Modified dynamic programming approach for offline segmentation of long hydrometeorological time series. Stoch. Environ. Res. Risk Assess. 2010, 24, 547–557. [Google Scholar] [CrossRef]
- Szilo, J.; Bialik, R.J. Grain size distribution of bedload transport in a gliaciated catchment (Baranowski Glacier, King George Island, Western Antartctica). Water 2018, 10, 360. [Google Scholar] [CrossRef]
- Song, Y.H.; Lee, E.H.; Lee, J.H. Functional relationship between soil slurry transfer and deposition in urban sewer conduits. Water 2018, 10, 825. [Google Scholar] [CrossRef]
- Hallouz, F.; Meddi, M.; Mahe, G.; Toumi, S.; Rahmani, S.E.A. Erosion, suspended sediment transport and sedimentation on the Wadi Mina at the Sidi M’Hamed Ben Aouda Dam, Algeria. Water 2018, 10, 895. [Google Scholar] [CrossRef]
- Sadaoui, M.; Ludwig, W.; Bourrin, F.; Bissonnais, Y.L.; Romero, E. Anthropogenic reservoirs of various sizes trap most of the sediment in the Mediterranean Maghreb Basin. Water 2018, 10, 927. [Google Scholar] [CrossRef]
- Kotti, F.; Dezileau, L.; Mahe, G.; Habaieb, H.; Benabdallah, S.; Bentkaya, M.; Calvez, R.; Dieulin, C. The impact of dams and climate on the evolution of the sediment loads to the sea by the Medjerda River using a paleo-hydrological approach. J. Afr. Earth. Sci. 2018, 142, 226–233. [Google Scholar] [CrossRef]
- Ben Moussa, T.; Amrouni, O.; Hzami, A.; Dezileau, L.; Mahe, G.; Condomines, M.; Saadi, A. Progradation and retrogradation of the Medjerda delta during the 20th century (Tunisia, Western Mediterranean). Compte. Rendus Geosci. 2019, 351, 340–350. [Google Scholar] [CrossRef]
- Wang, Y.-C.; Lai, C.-C. Evaluating the erosion process from a single-stripe laser-scanned topography: A laboratory case study. Water 2018, 10, 956. [Google Scholar] [CrossRef]
- Guo, S.; Zhu, Z.; Lyu, L. Effects of climate change and human activities on soil erosion in the Xihe River Basin, China. Water 2018, 10, 1085. [Google Scholar] [CrossRef]
- Adams, R.; Quinn, P.; Barber, N.; Reaney, S. The role of attenuation and land management in small catchments to remove sediment and phosphorus: A modelling study of mitigation options and impacts. Water 2018, 10, 1227. [Google Scholar] [CrossRef]
- Unal, N.E. Shear stress-based analysis of sediment incipient deposition in rigid boundary open channels. Water 2018, 10, 1399. [Google Scholar] [CrossRef]
- Chao, Y.-C.; Chen, C.-W.; Li, H.-C.; Chen, Y.-M. Riverbed migrations in Western Taiwan under climate change. Water 2018, 10, 1631. [Google Scholar] [CrossRef]
- Török, G.T.; Józsa, J.; Baranya, S. A shear Reynolds number-based classification method of the nonuniform bed load transport. Water 2019, 11, 73. [Google Scholar] [CrossRef]
- Jakubínský, J.; Pechanec, V.; Procházka, J.; Cudlín, P. Modelling of soil erosion and accumulation in an agricultural landscape—A comparison of selected approaches applied at the small stream basin level in the Czech Republic. Water 2019, 11, 404. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aksoy, H.; Mahe, G.; Meddi, M. Modeling and Practice of Erosion and Sediment Transport under Change. Water 2019, 11, 1665. https://doi.org/10.3390/w11081665
Aksoy H, Mahe G, Meddi M. Modeling and Practice of Erosion and Sediment Transport under Change. Water. 2019; 11(8):1665. https://doi.org/10.3390/w11081665
Chicago/Turabian StyleAksoy, Hafzullah, Gil Mahe, and Mohamed Meddi. 2019. "Modeling and Practice of Erosion and Sediment Transport under Change" Water 11, no. 8: 1665. https://doi.org/10.3390/w11081665
APA StyleAksoy, H., Mahe, G., & Meddi, M. (2019). Modeling and Practice of Erosion and Sediment Transport under Change. Water, 11(8), 1665. https://doi.org/10.3390/w11081665