Spatiotemporal Variability of Monthly and Annual Snow Depths in Xinjiang, China over 1961–2015 and the Potential Effects
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Datasets
2.2. Methods
2.2.1. Mann–Whitney Test
2.2.2. Empirical Orthogonal Function
2.2.3. Trend, Significance and Slope of Snow Depth
2.2.4. Wavelet Analysis
3. Results
3.1. Spatiotemporal Variations of Monthly and Annual Snow Depths
3.2. The Decomposed Monthly and Annual Snow Depth Using EOF
3.3. Trends and Abrupt Changes of Annual Snow Depth
3.4. Periods of Monthly and Annual Snow Depth
3.4.1. Temporal Variations
3.4.2. Spatial Distribution
3.5. Variations of Annual Snow Depths Decomposed by Daubechies Wavelet
3.6. The Coherence between Annual Snow Depth and Related Climatic Variables
4. Discussions
4.1. Spatiotemporal Variability of Snow Depths in Xinjiang
4.2. The Applications of Multi-Wavelet Methods
4.3. Impact of Various Factors on the Snow Depth and Potential Effects of Variations in Snow Depth
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
EOF | Empirical orthogonal function |
EOF1 | EOF first spatial mode |
DBN | Daubechies wavelet |
MMK | Modified Mann–Kendall |
EC1 | EOF first time mode |
References
- Wang, J.; Wang, L. A review on snow cover and snowmelt runoff simulation using remote sensing data sets in China. Proc. SPIE Int. Soc. Opt. Eng. 2003, 4894, 446–455. [Google Scholar] [CrossRef]
- Yang, Z.L.; Dickinson, R.E.; Robock, A.; Vinnikov, K.Y. Validation of the Snow Submodel of the Biosphere–Atmosphere Transfer Scheme with Russian Snow Cover and Meteorological Observational Data. J. Clim. 1997, 10, 353–373. [Google Scholar] [CrossRef]
- Dey, B.; Kumar, O.S.R.U.B. Himalayan winter snow cover area and summer monsoon rainfall over India. J. Geophys. Res. Ocean. 1983, 88, 5471–5474. [Google Scholar] [CrossRef]
- Hahn, D.G.; Shukla, J. An Apparent Relationship between Eurasian Snow Cover and Indian Monsoon Rainfall. J. Atmos. Sci. 1976, 33, 2461–2462. [Google Scholar] [CrossRef] [Green Version]
- Lamb, H.H. Two-way relationship between the snow or ice limit and 1,000– 500 mb thicknesses in the overlying atmosphere. Q. J. R. Meteorol. Soc. 2010, 81, 496–498. [Google Scholar] [CrossRef]
- Ding, Y.; Li, Y.; Li, L.; Yao, N.; Hu, W.; Yang, D.; Chen, C. Spatiotemporal variations of snow characteristics in Xinjiang, China over 1961–2013. Hydrol. Res. 2018, 49, 1578–1593. [Google Scholar] [CrossRef]
- Brun, E.; Vionnet, V.; Boone, A.; Decharme, B.; Peings, Y.; Valette, R.; Karbou, F.; Morin, S. Simulation of Northern Eurasian Local Snow Depth, Mass, and Density Using a Detailed Snowpack Model and Meteorological Reanalyses. J. Hydrometeorol. 2013, 14, 203–219. [Google Scholar] [CrossRef]
- Kern, S.; Ozsoy-Çiçek, B. Satellite Remote Sensing of Snow Depth on Antarctic Sea Ice: An Inter-Comparison of Two Empirical Approaches. Remote Sens. 2016, 8, 450. [Google Scholar] [CrossRef]
- Liu, Y.; Ruan, H.; Zhang, Y.; Li, Y. Spatio-Temporal Characteristics of the Snow Cover Ecllution in the Northern Region of Xinjiang over the Period of 1961—2008. Resour. Sci. 2012, 34, 629–635. [Google Scholar] [CrossRef]
- Hu, L.; Li, S.; Liang, F. Analysis of the variation characteristics of snow covers in Xinjiang region during recent 50 years. J. Glaciol. Geocryol. 2013, 35, 793–800. [Google Scholar] [CrossRef]
- Xu, W.; Ma, L.; Ma, M.; Zhang, H.; Yuan, W. Spatial-temporal variability of snow cover and depth in Qinghai-Tibetan Plateau. J. Clim. 2015, 30, 1522–1533. [Google Scholar] [CrossRef]
- Che, T.; Li, X.; Jin, R.; Armstrong, R.; Zhang, T. Snow depth derived from passive microwave remote-sensing data in China. Ann. Glaciol. 2008, 49, 145–154. [Google Scholar] [CrossRef] [Green Version]
- Huang, N.E.; Shen, Z.; Long, S.R.; Wu, M.C.; Shih, H.H.; Zheng, Q.; Yen, N.C.; Tung, C.C.; Liu, H.H. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proc. Math. Phys. Eng. Sci. 1998, 454, 903–995. [Google Scholar] [CrossRef]
- Nourani, V.; Alami, M.T.; Aminfar, M.H.; Aalami, M.T. A combined neural-wavelet model for prediction of Ligvanchai watershed precipitation. Eng. Appl. Artif. Intell. 2009, 22, 466–472. [Google Scholar] [CrossRef]
- Cortes, C.; Vapnik, V. Support-Vector Networks. Mach. Learn. 1995, 20, 273–297. [Google Scholar] [CrossRef]
- Priestley, M.B. Spectral Analysis and Time Series; Academic Press: Cambridge, MA, USA, 1981; pp. 179–183. [Google Scholar]
- Grossmann, A.; Kronland-Martinet, R.; Morlet, J. Reading and Understanding Continuous Wavelet Transforms. Wavelets 1990, 31, 2–20. [Google Scholar] [CrossRef]
- Lorenz, E.N. Empirical Orthogonal Functions and Statistical Weather Prediction; Massachusetts Institute of Technology, Dept. of Meteorology: Cambridge, MA, USA, 1956. [Google Scholar]
- Hu, W.; Si, B.C. Estimating spatially distributed soil water content at small watershed scales based on decomposition of temporal anomaly and time stability analysis. Hydrol. Earth Syst. Sci. 2016, 20, 571–587. [Google Scholar] [CrossRef] [Green Version]
- Kim, S.E.; Seo, I.W.; Choi, S.Y. Assessment of water quality variation of a monitoring network using exploratory factor analysis and empirical orthogonal function. Environ. Model. Softw. 2017, 94, 21–35. [Google Scholar] [CrossRef]
- Yang, P.; Xia, J.; Zhan, C.; Qiao, Y.; Wang, Y. Monitoring the spatio-temporal changes of terrestrial water storage using GRACE data in the Tarim River basin between 2002 and 2015. Sci. Total Environ. 2017, 595, 218–228. [Google Scholar] [CrossRef]
- Achuthavarier, D.; Schubert, S.D.; Vikhliaev, Y.V. North Pacific decadal variability: Insights from a biennial ENSO environment. Clim. Dyn. 2016, 49, 1379–1397. [Google Scholar] [CrossRef]
- Cerrone, D.; Fusco, G.; Cotroneo, Y.; Simmonds, I.; Budillon, G. The Antarctic Circumpolar Wave: Its Presence and Interdecadal Changes during the Last 142 Years. J. Clim. 2017, 30, 6371–6389. [Google Scholar] [CrossRef]
- Sang, Y.F.; Wang, D.; Wu, J.C.; Zhu, Q.P.; Wang, L. Entropy-Based Wavelet De-noising Method for Time Series Analysis. Entropy 2009, 11, 1123–1147. [Google Scholar] [CrossRef] [Green Version]
- Whitcher, B.; Byers, S.D.; Guttorp, P.; Percival, D.B. Testing for homogeneity of variance in time series: Long memory, wavelets, and the Nile River. Water Resour. Res. 2002, 38. [Google Scholar] [CrossRef]
- Torrence, C.; Compo, G.P. A Practical Guide to Wavelet Analysis. Bull. Am. Meteorol. Soc. 1998, 79, 61–78. [Google Scholar] [CrossRef] [Green Version]
- Labat, D. Recent advances in wavelet analyses: Part 1. A review of concepts. J. Hydrol. 2008, 314, 275–288. [Google Scholar] [CrossRef]
- Schaefli, B.; Maraun, D.; Holschneider, M. What drives high flow events in the Swiss Alps? Recent developments in wavelet spectral analysis and their application to hydrology. Adv. Water Resour. 2007, 30, 2511–2525. [Google Scholar] [CrossRef] [Green Version]
- Rashid, M.M.; Beecham, S.; Chowdhury, R.K. Assessment of trends in point rainfall using Continuous Wavelet Transforms. Adv. Water Resour. 2015, 82, 1–15. [Google Scholar] [CrossRef]
- Kuang, C.P.; Su, P.; Gu, J.; Chen, W.J.; Zhang, J.L.; Zhang, W.L.; Zhang, Y.F. Multi-time scale analysis of runoff at the Yangtze estuary based on the Morlet Wavelet Transform method. J. Mt. Sci. 2014, 11, 1499–1506. [Google Scholar] [CrossRef]
- Li, Y.; Sun, C. Impacts of the superimposed climate trends on droughts over 1961–2013 in Xinjiang, China. Theor. Appl. Climatol. 2017, 129, 1–18. [Google Scholar] [CrossRef]
- Li, Y.; Yao, N.; Sahin, S.; Appels, W.M. Spatiotemporal variability of four precipitation-based drought indices in Xinjiang, China. Theor. Appl. Climatol. 2017, 129, 1017–1034. [Google Scholar] [CrossRef]
- Zhang, Q.; Singh, V.P.; Li, J.; Jiang, F.; Bai, Y. Spatio-temporal variations of precipitation extremes in Xinjiang, China. J. Hydrol. 2012, 434, 7–18. [Google Scholar] [CrossRef]
- Guo, C.; Li, B.; Yang, S.; Zhuang, X.; Wang, H. Analysis of Climate Characteristic of Heavy Snowstorm in Altay Region of Xinjiang. J. Arid Meteorol. 2012, 30, 604–608. [Google Scholar]
- Hirsch, R.M.; Helsel, D.R.; Cohn, T.A.; Gilroy, E.J.; Maidment, D.R. Statistical analysis of hydrologic data. Mod. Diagn. Treat. 1992, 17, 1–17. [Google Scholar]
- Yue, S.; Wang, C. The influence of serial correlation on the Mann–Whitney test for detecting a shift in median. Adv. Water Resour. 2002, 25, 325–333. [Google Scholar] [CrossRef]
- Perry, M.A.; Niemann, J.D. Analysis and estimation of soil moisture at the catchment scale using EOFs. J. Hydrol. 2007, 334, 388–404. [Google Scholar] [CrossRef]
- Sun, Z.; Opp, C. Characterizing snow cover interannual variability with Empirical Orthogonal Function (EOF) analysis and its climate effect in the inland region, Northwest China. MIPPR 2009 Remote Sens. GIS Data Process. Other Appl. 2009, 7498. [Google Scholar] [CrossRef]
- .Yue, S.; Wang, C.Y. Regional streamflow trend detection with consideration of both temporal and spatial correlation. Int. J. Clim. 2002, 22, 933–946. [Google Scholar] [CrossRef]
- Kendall, M. Rank Correlation Methods; Charles, G., Ed.; Google Scholar: London, UK, 1975. [Google Scholar]
- Mann, H. Nonparametric tests against trend. Econometrica 13 245259Milly PCD, Dunne KA (2002) Macro scale water fluxes 2, water and energy supply control of their enter-annual variability. Water Resour. Res. 1945, 38, 241249. [Google Scholar]
- Li, Y.; Horton, R.; Ren, T.; Chen, C. Prediction of annual reference evapotranspiration using climatic data. Agric. Water Manag. 2010, 97, 300–308. [Google Scholar] [CrossRef]
- Li, Y.; Yao, N.; Chau, H.W. Influences of removing linear and nonlinear trends from climatic variables on temporal variations of annual reference crop evapotranspiration in Xinjiang, China. Sci. Total Environ. 2017, 592, 680–692. [Google Scholar] [CrossRef] [Green Version]
- Partal, T.; Kahya, E. Trend analysis in Turkish precipitation data. Hydrol. Process. 2006, 20, 2011–2026. [Google Scholar] [CrossRef]
- Whitcher, B.; Guttorp, P.; Percival, D.B. Wavelet analysis of covariance with application to atmospheric time series. J. Geophys. Res. Atmos. 2000, 105, 14941–14962. [Google Scholar] [CrossRef] [Green Version]
- Foufoula-Georgiou, E.; Kumar, P. Wavelet analysis for geophysical applications. Rev. Geophys. 1997, 35, 385–412. [Google Scholar] [CrossRef] [Green Version]
- Lina, J.M. Complex Daubechies Wavelets: Filters Design and Applications. In Inverse Problems Tomography Image Processing; Springer: Boston, MA, USA, 1997; pp. 1–18. [Google Scholar]
- Torrence, C.; Webster, P.J. Interdecadal Changes in the ENSO–Monsoon System. J. Clim. 1999, 12, 2679–2690. [Google Scholar] [CrossRef]
- Maraun, D.; Kurths, J. Cross wavelet analysis: Significance testing and pitfalls. Nonlinear Process. Geophys. 2004, 11, 505–514. [Google Scholar] [CrossRef]
- Mazzarella, A.; Giuliacci, A.; Liritzis, I. On the 60-month cycle of Multivariate ENSO Index. Theor. Appl. Climatol. 2010, 100, 23–27. [Google Scholar] [CrossRef]
- Grünewald, T.; Bühler, Y.; Lehning, M. Elevation dependency of mountain snow depth. Cryosphere 2014, 8, 2381–2394. [Google Scholar] [CrossRef] [Green Version]
- Zhong, X.; Zhang, T.; Wang, K. Snow density climatology across the former USSR. Cryosphere 2014, 8, 785–799. [Google Scholar] [CrossRef] [Green Version]
- Goodrich, L.E. The influence of snow cover on the ground thermal regime. Can. Geotech. J. 1982, 19, 421–432. [Google Scholar] [CrossRef] [Green Version]
- Carbone, A.; Chiaia, B.M.; Frigo, B.; Türk, C. Fractal Model for Snow. Mater. Sci. Forum 2010, 638, 2555–2560. [Google Scholar] [CrossRef]
EOF | October | November | December | January | February | March | Annual |
---|---|---|---|---|---|---|---|
EOF1 | 73.92 | 69.91 | 82.79 | 88.24 | 87.23 | 77.35 | 82.79 |
EOF2 | 8.50 | 5.92 | 3.52 | 2.62 | 3.09 | 5.72 | 3.52 |
EOF3 | 5.65 | 0 | 2.88 | 1.59 | 2.04 | 3.93 | 2.88 |
EOF4 | 3.06 | 0 | 1.39 | 0.95 | 1.28 | 2.32 | 1.39 |
Time Stage | Main Period (Years) | ||
---|---|---|---|
2–8 | 9–14 | 15–20 | |
October | 73 | 14 | 15 |
November | 72 | 17 | 13 |
December | 38 | 52 | 12 |
January | 58 | 35 | 9 |
February | 42 | 35 | 25 |
March | 61 | 21 | 20 |
Annual | 45 | 38 | 19 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Y.; Li, Y.; Li, L.; Chen, C. Spatiotemporal Variability of Monthly and Annual Snow Depths in Xinjiang, China over 1961–2015 and the Potential Effects. Water 2019, 11, 1666. https://doi.org/10.3390/w11081666
Liu Y, Li Y, Li L, Chen C. Spatiotemporal Variability of Monthly and Annual Snow Depths in Xinjiang, China over 1961–2015 and the Potential Effects. Water. 2019; 11(8):1666. https://doi.org/10.3390/w11081666
Chicago/Turabian StyleLiu, Yi, Yi Li, Linchao Li, and Chunyan Chen. 2019. "Spatiotemporal Variability of Monthly and Annual Snow Depths in Xinjiang, China over 1961–2015 and the Potential Effects" Water 11, no. 8: 1666. https://doi.org/10.3390/w11081666
APA StyleLiu, Y., Li, Y., Li, L., & Chen, C. (2019). Spatiotemporal Variability of Monthly and Annual Snow Depths in Xinjiang, China over 1961–2015 and the Potential Effects. Water, 11(8), 1666. https://doi.org/10.3390/w11081666