Water Quality Changes during the Initial Operating Phase of Riverbank Filtration Sites in Upper Egypt
Abstract
:1. Introduction
- Initial site assessment, including visual reconnaissance by site visits, documentation of verbal and archived information, and in-situ sampling of river water and groundwater.
- Basic site survey and installation of basic infrastructure: Identifying possible well locations, determining ground elevations and datum, river and groundwater monitoring locations, and construction of exploratory and monitoring wells.
- Monitoring and determining aquifer parameters: Monitoring of river and groundwater levels and quality, river channel geometry and grain size analysis, and pumping tests.
- Analytical or numerical groundwater flow modeling: Determining flow paths, travel times, and portions of bank filtrate and groundwater in the extracted water.
2. Materials and Methods
2.1. Site Description
2.2. Water Sampling and Analysis
3. Results and Discussion
3.1. The Quality of River Nile and the Ambient Groundwater in Luxor and Sohag
3.2. Quality of the Pumped Water from RBF Units Near Luxor and Sohag
3.3. Water Quality Changes during the Initial Phase of RBF near Luxor and Sohag
4. Sustainability and Cost of RBF
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Deutsches Wissenschaftszentrum (DWZ) Cairo. River Bank Filtration Expert Workshop under the Framework of the Egyptian German Water Cluster Report; Deutsches Wissenschaftszentrum (DWZ) Cairo: Cairo, Egypt, 26 September 2016. [Google Scholar]
- Central Agency for Public Mobilization and Statistics. Census Population. September 2017. Available online: https://censusinfo.capmas.gov.eg (accessed on 16 February 2019).
- Wahaab, R.A. One System Inventory: Environment Theme—Egypt Nile Basin Initiative; Eastern Technical Regional Office: Addis Ababa, Ethiopia, 2006. [Google Scholar]
- Yousry, M.; El-Sherbini, A.; Heikal, M.; Salem, T. Suitability of water quality status of Rosetta branch for west Delta water conservation and irrigation rehabilitation project. Water Sci. 2009, 46, 47–60. [Google Scholar]
- Yehia, A.G.; Fahmy, K.M.; Mehany, M.A.S.; Mohamed, G.G. Impact of extreme climate events on water supply sustainability in Egypt—Case studies in Alexandria region and Upper Egypt. J. Water Clim. Chang. 2017, 8, 484–494. [Google Scholar] [CrossRef]
- HCWW. RBF in Egypt—Strategy and Policy. In Holding Company for Water and Wastewater Report; HCWW: Cairo, Egypt, 2018. [Google Scholar]
- Grischek, T.; Bartak, R. Riverbed clogging and sustainability of riverbank filtration. J. Water 2016, 8, 604. [Google Scholar] [CrossRef]
- Ray, C.; Melin, G.; Linsky, R.B. Riverbank Filtration: Improving Source Water Quality; Springer: Dordrecht, The Netherlands, 2002. [Google Scholar]
- Grischek, T.; Schubert, J.; Jasperse, J.L.; Stowe, S.M.; Collins, M.R. What is the appropriate site for RBF. In Management of Aquifer Recharge for Sustainability, Proceedings of the ISMAR 6, Phoenix, AZ, USA, 28 October–2 November 2007; Fox, P., Ed.; Acacia: Phoenix, AZ, USA, 2007; pp. 466–474. [Google Scholar]
- Grischek, T.; Ray, C. Bank filtration as managed surface—groundwater interaction. J. Water 2009, 5, 125–139. [Google Scholar] [CrossRef]
- Ghodeif, K.; Grischek, T.; Bartak, R.; Wahaab, R.; Herlitzius, J. Potential of river bank filtration (RBF) in Egypt. Environ. Earth Sci. 2016, 75, 671. [Google Scholar] [CrossRef]
- Hiscock, K.; Grischek, T. Attenuation of groundwater pollution by bank filtration. J. Hydrol. 2002, 266, 139–144. [Google Scholar] [CrossRef] [Green Version]
- Sandhu, C. A Concept for the Investigation of Riverbank Filtration Sites for Potable Water Supply in India. Ph.D. Thesis, Faculty of Environmental Sciences, TU Dresden, Division of Water Sciences, HTW Dresden, Dresden, Germany, 2015. [Google Scholar]
- Henzler, A.F.; Greskowiak, J.; Massmann, G. Seasonality of temperatures and redox zonation during bank filtration—A modeling approach. J. Hydrol. 2016, 535, 282–292. [Google Scholar] [CrossRef]
- Stuyfzand, P.J. Fate of pollutants during artificial recharge and bank filtration in the Netherlands. In Artificial Recharge of Groundwater; Peters, J.H., Ed.; Balkema: Rotterdam, The Netherlands, 1998; pp. 119–125. [Google Scholar]
- Sandhu, C.; Grischek, T.; Börnick, H.; Feller, J.; Sharma, S.K. A water quality appraisal of some existing and potential riverbank filtration sites in India. J. Water 2019, 11, 215. [Google Scholar] [CrossRef]
- Grischek, T.; Paufler, S. Prediction of iron release during riverbank filtration. J. Water 2017, 9, 317. [Google Scholar] [CrossRef]
- Paufler, S.; Grischek, T.; Benso, M.; Seidel, N.; Fischer, T. The impact of river discharge and water temperature on manganese release from the riverbed during riverbank filtration—A case study from Dresden, Germany. J. Water 2018, 10, 1476. [Google Scholar] [CrossRef]
- Egyptian Standard Specifications for Potable Drinking Water; Decision of the Minister of Health and Population No. 458; Minister of Health and Population: Cairo, Egypt, 2007.
- American Water Works Association (AWWA); Water Environment Federation (WEF); American Public Health Association (APHA). Standard Methods for the Examination of Water and Wastewater (SMWW), 23rd ed. 2018. Available online: https://doi.org/10.2105/SMWW.2882.219 (accessed on 1 May 2019).
- Ghodeif, K.; Paufler, S.; Grischek, T.; Wahaab, R.; Souaya, E.; Bakr, M.; Abogabal, A. Riverbank filtration in Cairo, Egypt—Part I: Installation of a new riverbank filtration site and first monitoring results. Environ. Earth Sci. 2018, 77, 270. [Google Scholar] [CrossRef]
- Hoehn, E.; Cirpka, O.A. Assessing residence times of hyporheic ground water in two alluvial flood plains of the Southern Alps using water temperature and tracers. Hydrol. Earth Syst. Sci. 2006, 10, 553–563. [Google Scholar] [CrossRef] [Green Version]
- Grischek, T. Management of RBF along the Elbe River. Ph.D. Thesis, Department of Water Sciences, Dresden University of Technology, Dresden, Germany, 2003. (In German). [Google Scholar]
- Nagy-Kovács, Z.; Davidesz, J.; Czihat-Mártonné, K.; Grischek, T. Water quality changes during riverbank filtrationin Budapest, Hungary. J. Water 2019, 11, 302. [Google Scholar] [CrossRef]
- Trettin, R.; Grischek, T.; Strauch, G.; Mallen, G.; Nestler, W. The suitability and usage of 18O and chloride as natural tracers for bank filtrate at the Middle River Elbe. Isot. Environ. Health Stud. 1999, 35, 331–350. [Google Scholar] [CrossRef]
- Davis, S.N.; Whittemore, D.O.; Fabryka-Martin, J. Uses of chloride/bromide ratios in studies of potable water. Ground Water 1998, 36, 338–350. [Google Scholar] [CrossRef]
- Paufler, S.; Grischek, T.; Bartak, R.; Ghodeif, K.; Wahaab, R.; Boernick, H. Riverbank filtration in Cairo, Egypt—Part II: Detailed investigation of a new riverbank filtration site with a focus on manganese. Environ. Earth Sci. 2018, 77, 318. [Google Scholar] [CrossRef]
- Schoenheinz, D.; Grischek, T. Behavior of dissolved organic carbon during bank filtration under extreme climate conditions. In Riverbank Filtration for Water Security in Desert Countries; Ray, C., Shamrukh, M., Eds.; Springer Science + Business Media B.V.: Berlin, Germany, 2011; pp. 51–67. [Google Scholar]
- Grischek, T.; Hiscock, K.M.; Metschies, T.; Dennis, P.; Nestler, W. Factors affecting denitrification during infiltration of river water into a sand and gravel aquifer in Saxony, Germany. Water Res. 1998, 32, 450–460. [Google Scholar] [CrossRef]
- SCWW. Internal Report. In Sohag Company for Water and Wastewater; SCWW: Sohag, Egypt, 2016. [Google Scholar]
Site | Alsaayda, Luxor | Eltawael, Sohag | Al-Maragha, Sohag | |||||
---|---|---|---|---|---|---|---|---|
Well No. | L1 | L2 | L3 | T1 | T2 | T3 | M1 | M2 |
Depth of well (mbgs) | 31 | 31 | 31 | 36 | 36 | 36 | 36 | 36 |
Location of filter screen (mbgs) | 10–25 | 10–25 | 6–21 | 18–35 | 18–35 | 18–35 | 18–35 | 18–35 |
Borehole diameter (inch) | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 20 |
Well diameter (inch) | 14 | 14 | 14 | 14 | 14 | 14 | 14 | 14 |
Distance from river bank (m) | 13 | 10 | 5 | 6 | 6 | 6 | 5 | 5 |
Distance from neighboring well (m) | 25 | 25/19 | 19 | 10 | 10/10 | 10 | 12 | 12 |
Pumping rate (L/s) | 35 | 35 | 35 | 35 | 35 | 35 | 35 | 35 |
Static groundwater level (mbgs) | 2.0 * | 1.8 * | 1.5 * | 2.2 ** | 2.4 ** | 2.4 ** | 2.5 *** | 2.5 *** |
Drawdown (m) | 4.0 | 3.6 | 3.5 | 3.7 | 3.7 | 4.1 | 3.6 | 3.6 |
Site | Alsaayda Near Luxor | Eltawael | Al-maragha | |||||
---|---|---|---|---|---|---|---|---|
Well No. | L1 | L2 | L3 | T1 | T2 | T3 | M1 | M2 |
Clay top | 0–2 | 0–4 | 0–4 | - | - | - | 0–8 | 0–8 |
Fine sand | 2–7 | 4–9 | 4–13 | 0–10 | 0–10 | 0–10 | - | - |
Medium sand | - | 9–16 | 13–16 | - | - | - | 8–12 | 8–12 |
Coarse sand | 7–18 | - | - | 10–22 | 10–22 | 10–22 | 12–17 | 12–17 |
Coarse sand with gravel | 18–19 | 16–30 | 16–30 | 22–30 | 22–30 | 22–30 | 17–28 | 17–28 |
Gravel | 19–25 | - | - | 30–35 | 30–35 | 30–35 | 28–35 | 28–35 |
Shale | >25 | Not reached | Not reached | - | - | - | - | - |
Parameter | Abbreviation | Unit | Method, Equipment, Method No. |
---|---|---|---|
Physical Parameters | |||
Electric Conductivity | EC | µS/cm | Conductivity (2510)/Laboratory method/WTW Cond. Meter, 2–55 |
Turbidity | Turb | NTU | Turbidity (2130)/Nephelometric method/Turbidimeter (Hach), 2–12 |
Chemical Parameters | |||
pH | pH | - | pH (4500-H+)/Electrometric method/ThermoScientific (Orion 3 STAR), 4–95 |
Alkalinity | Alk | mg/L | Alkalinity (2320)/Titrimetric method, 2–36 |
Total organic carbon | TOC | mg/L | TOC (5310)/C. Persulfate–Ultraviolet or Heated-Persulfate Oxidation Method, 5–29 |
Total Hardness | CaCO3 | mg/L | EDTA titrimetric method, 3–69 |
Ammonium | NH4+ | mg/L | Ammonium (4500-NH3)/Phenate method, 4–114 |
Chloride | Cl− | mg/L | Chloride (4500-Cl−)/Argentometric method, 4–75 |
Sulfate | SO42− | mg/L | Sulfate (4500-SO42−)/Turbidimetric method, 4–197 |
Nitrate | NO3− | mg/L | Nitrate (4500-NO3)/Ultraviolet spectrophotometric method/Cecil 2041 UV/VIS, 4–126 |
Iron | Fe | mg/L | Iron (3500-Fe)/Phenanthroline method/Cecil 2041 UV/VIS, 3–79 |
Manganese | Mn | mg/L | Manganese (3500-Mn)/Persulfate method/Cecil 2041 UV/VIS, 3–87 |
Microbiological Parameters | |||
Heterotrophic Plate Count 35 °C | HPC 35 °C | count/mL | HPC (9215)/B-Pour Plate Method, 9–53 |
Total coliform | TC | count/100 mL | MFT (9222)/B-D, endo agar method, 9–81 for drinking water, MTFT 9221 B-C-E for intake water |
Fecal coliforms | FCC | count/100 mL | MFT (9222)/Membrane filter procedure for coliform group D, thermotolerant (fecal) coliforms |
Biological Parameters | |||
Total Algae Count | Algae | cells/mL | Plankton (10200)/C, E and F, 10–11, 10–15, 10–17 |
Parameter | Unit | Standard Egypt | Ambient GW | Nile Water, Sohag | BF Luxor L * (2018) | BF Sohag T ** | BF Sohag M *** |
---|---|---|---|---|---|---|---|
EC | µS/cm | - | 634 341–1039 (n = 333) | 322 273–461 (n = 290) | 350 322–594 (n = 57) | 507 388–1213 (n = 402) | 547 452–734 (n = 82) |
pH | - | 6.5–8.5 | 7.5 6.9–7.9 (n = 329) | 8.1 7.5–8.6 (n = 592) | 7.5 7.4–7.7 (n = 57) | 7.5 7.3–7.8 (n = 386) | 7.7 7.5–8.02 (n = 82) |
Turbidity | NTU | 1 | 0.7 0.1–3.5 (n = 333) | 3.3 0.3–300 (n = 517) | 0.24 0.1–0.65 (n = 57) | 0.38 0.1–0.99 (n = 385) | 0.36 0.2–1.5 (n = 82) |
Alkalinity | mg/L | 500 | 297 139–477 (n = 327) | 134 110–213 (n = 544) | n.d. | 238 135–350 (n = 265) | n.d. |
TDS | mg/L | - | 406 218–665 (n = 333) | 206 175–295 (n = 290) | 224 206–380 (n = 57) | 324 248–776 (n = 402) | 350 289–470 (n = 82) |
Total HardnessCaCO3 | mg/L | - | 230 103–823 (n = 326) | 115 88–192 (n = 552) | n.d. | 209 150–443 (n = 383) | n.d. |
Fe | mg/L | 0.3 | 0.23 0.012–0.76 (n = 257) | <0.001 <0.001–0.19 (n = 205) | 0.11 0.09–0.20 (n = 57) | 0.25 0.1–0.51 (n = 393) | 0.14 0.06–0.46 (n = 82) |
Mn | mg/L | 0.4 | 0.34 0.07–1.0 (n = 260) | <0.001 <0.001–0.16 (n = 199) | 0.42 0.3–0.61 (n = 57) | 0.55 0.38–1.2 (n = 388) | 0.45 0.4–0.65 (n = 82) |
NH4+ | mg/L | 0.5 | 0.68 0.002–1.38 (n = 239) | 0.018 <0.002–0.5 (n = 188) | 0.19 0.09–0.33 (n = 57) | 0.12 0.01–0.52 (n = 367) | 0.2 0.07–0.54 (n = 81) |
Cl− | mg/L | 250 | 30 16–75 (n = 327) | 15 11–27 (n = 289) | n.d. | 25 16–64 (n = 381) | n.d. |
SO42− | mg/L | 250 | 31 17–76 (n = 318) | 22 14–37 (n = 289) | n.d. | 27 17–81 (n = 375) | n.d. |
NO3− | mg/L | 45 | 1.0 <1–5.7 (n = 247) | 1.5 <1–4.6 (n = 181) | n.d. | 1.2 <1–4.6 (n = 263) | n.d. |
TOC | mg/L | - | n.d. | 2.7 2.1–3.2 (n = 11) | n.d. | 1.2 1.1–1.4 (n = 17) | n.d. |
HPC | CFU/mL | 50 | 34 1–6500 (n = 300) | 1900 220–9550 (n = 245) | 8 0–720 (n=57) | 2 0–1200 (n=378) | 20 2–800 (n=82) |
Total coliform | CFU/100 mL | <1 | 0 0–355 (n = 302) | 2700 45–54,000 (n = 257) | 10 0–240 (n = 57) | 0 0–2410 (n = 369) | 0 0–200 (n = 82) |
Fecal coliform | CFU/100 mL | <1 | 0 0–16 (n = 302) | 180 20–790 (n = 221) | 0 0–120 (n = 57) | 0 0–100 (n = 399) | 0 0–6 (n = 82) |
Parameter | Site L | Site T | Site M |
---|---|---|---|
EC | 2 | 7 | 3 |
Cl- | n.d. | 7 | n.d. |
Fe | 3 | n.a. | 3 |
Mn | >7* | 8 | 4 |
NH4+ | n.a. | 6 | 3–4 |
HPC | 3.5 | 14 | 4 |
TCC | 3.5 | 13 | 2 |
FC | 2.5 | 13 | 2 |
Capacity and Cost | RBF Unit | Small Conventional WTP | Direct Infiltration WTP | Groundwater Well | Compact Unit |
---|---|---|---|---|---|
Capacity (m3/day) | 3024 | 8640 | 3465 | 2160 | 2160 |
Capital cost (Million EGP/Unit) | 0.6 * | 30–40 | 60 | 0.75 *–10 | 15 |
Operational cost (Million EGP/Unit) | ≈0.05 * | ≈0.5 | ≈1.5 | ≈0.1 * | ≈0.7 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wahaab, R.A.; Salah, A.; Grischek, T. Water Quality Changes during the Initial Operating Phase of Riverbank Filtration Sites in Upper Egypt. Water 2019, 11, 1258. https://doi.org/10.3390/w11061258
Wahaab RA, Salah A, Grischek T. Water Quality Changes during the Initial Operating Phase of Riverbank Filtration Sites in Upper Egypt. Water. 2019; 11(6):1258. https://doi.org/10.3390/w11061258
Chicago/Turabian StyleWahaab, Rifaat Abdel, Ahmed Salah, and Thomas Grischek. 2019. "Water Quality Changes during the Initial Operating Phase of Riverbank Filtration Sites in Upper Egypt" Water 11, no. 6: 1258. https://doi.org/10.3390/w11061258