Sediment Identification Using Machine Learning Classifiers in a Mixed-Texture Dredge Pit of Louisiana Shelf for Coastal Restoration
Abstract
:1. Introduction
2. Background
3. Methods
3.1. Primary and Secondary Data
3.2. Surficial Sediment Data
3.3. Classification Methods
4. Results
4.1. Grain Sizes
4.2. Data Exploration
4.3. Feature Selection
4.4. Model Performance
5. Discussion
5.1. Model Evaluation and Comparison with Previous Studies
5.2. Limitations and Future Work
5.3. Implication to Coastal Restoration
6. Conclusions
- (1)
- Grain size analysis of the 58 sediment samples inside the dredge pit shows that mud is prone to deposit in trough zones with lower backscatter values, while sand is likely to appear on the flat seabed with higher backscatter values.
- (2)
- The variable importance analysis indicates that backscatter, roughness_bathymetry, rugosity_backscatter, and bathymetry (from high to low) are the four most significant features to classify sediment types. A Random Forest model with these four selected features has the best classification power with the accuracy rate of 0.9 to predict the sediment types inside the dredge pit.
- (3)
- The particular spatial resolution between multi-beam density and the availability of sediment type, a simple mud–sand classification method, and the positional accuracy of the sediment samples collected in the field are the three possible factors that likely lead to differences between the planned and actual locations of sediment samples.
- (4)
- The deposition and redistribution of mud inside the Caminada pit make it unusable for barrier island restoration, but our model provides a new and efficient method to predict the time-series change of sediments (mud and sand) distribution inside the Caminada pit for post-construction management.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Syvitski, J.P.; Kettner, A.J.; Overeem, I.; Hutton, E.W.; Hannon, M.T.; Brakenridge, G.R.; Day, J.; Vörösmarty, C.; Saito, Y.; Giosan, L. Sinking deltas due to human activities. Nat. Geosci. 2009, 2, 681. [Google Scholar] [CrossRef]
- Vörösmarty, C.J.; Syvitski, J.; Day, J.; De Sherbinin, A.; Giosan, L.; Paola, C. Battling to save the world’s river deltas. Bull. At. Sci. 2009, 65, 31–43. [Google Scholar] [CrossRef]
- Byrnes, M.R.; Hammer, R.M.; Thibaut, T.D.; Snyder, D.B. Physical and biological effects of sand mining offshore Alabama, USA. J. Coast. Res. 2004, 20, 6–24. [Google Scholar] [CrossRef]
- Kennedy, A.B.; Slatton, K.C.; Starek, M.; Kampa, K.; Cho, H.-C. Hurricane response of nearshore borrow pits from airborne bathymetric lidar. J. Waterw. Port Coast. Ocean Eng. 2009, 136, 46–58. [Google Scholar] [CrossRef]
- CEC; CECI. NRDA Caminada Headland Beach and Dune Restoration, Increment II (BA-143) Completion Report; Prepared for Coastal Protection and Restoration Authority: Baton Rouge, LA, USA, 2017. [Google Scholar]
- Syed Khalil, A.F.; Richard, C. Raynie, Sediment management for sustainable ecosystem restoration of coastal Louisiana. Shore Beach 2018, 86, 17–27. [Google Scholar]
- Allison, M.A.; Ramirez, M.T.; Meselhe, E.A. Diversion of Mississippi River water downstream of New Orleans, Louisiana, USA to maximize sediment capture and ameliorate coastal land loss. Water Resour. Manag. 2014, 28, 4113–4126. [Google Scholar] [CrossRef]
- Stone, G.; Condrey, R.; Fleeger, J.; Khalil, S.; Kobashi, D.; Jose, F.; Evers, E.; Dubois, S.; Liu, B.; Arndt, S. Environmental Investigation of Long-Term Use of Ship Shoal Sand Resources for Large Scale Beach and Coastal Restoration in Louisiana; OCS Study MMS; US Dept. of the Interior, Minerals Management Service, Gulf of Mexico OCS Region: New Orleans, LA, USA, 2009; Volume 24, p. 278.
- Hanley, M.; Hoggart, S.; Simmonds, D.; Bichot, A.; Colangelo, M.; Bozzeda, F.; Heurtefeux, H.; Ondiviela, B.; Ostrowski, R.; Recio, M. Shifting sands? Coastal protection by sand banks, beaches and dunes. Coast. Eng. 2014, 87, 136–146. [Google Scholar] [CrossRef]
- Jonah, F.E.; Adjei-Boateng, D.; Agbo, N.W.; Mensah, E.A.; Edziyie, R.E. Assessment of sand and stone mining along the coastline of Cape Coast, Ghana. Ann. GIS 2015, 21, 223–231. [Google Scholar] [CrossRef]
- Brown, J.M.; Amoudry, L.O.; Souza, A.J.; Rees, J. Fate and pathways of dredged estuarine sediment spoil in response to variable sediment size and baroclinic coastal circulation. J. Environ. Manag. 2015, 149, 209–221. [Google Scholar] [CrossRef] [Green Version]
- Rangel-Buitrago, N.G.; Anfuso, G.; Williams, A.T. Coastal erosion along the Caribbean coast of Colombia: Magnitudes, causes and management. Ocean. Coast. Manag. 2015, 114, 129–144. [Google Scholar] [CrossRef]
- Dubois, S.; Gelpi, C.G.; Condrey, R.E.; Grippo, M.A.; Fleeger, J.W. Diversity and composition of macrobenthic community associated with sandy shoals of the Louisiana continental shelf. Biodivers. Conserv. 2009, 18, 3759–3784. [Google Scholar] [CrossRef]
- Obelcz, J.; Xu, K.; Bentley, S.J.; O’Connor, M.; Miner, M.D. Mud-capped dredge pits: An experiment of opportunity for characterizing cohesive sediment transport and slope stability in the northern Gulf of Mexico. Estuar. Coast. Shelf Sci. 2018, 208, 161–169. [Google Scholar] [CrossRef]
- Wang, J.; Xu, K.; Li, C.; Obelcz, J. Forces Driving the Morphological Evolution of a Mud-Capped Dredge Pit, Northern Gulf of Mexico. Water 2018, 10, 1001. [Google Scholar] [CrossRef]
- Liu, H.; Xu, K.; Bentley, S.; Li, C.; Miner, M.; Wilson, C.; Xue, Z. Sediment Transport and Slope Stability of Ship Shoal Borrow Areas for Coastal Restoration of Louisiana. In Proceedings of the AGU Fall Meeting Abstracts, New Orleans, LA, USA, 11–15 December 2017. [Google Scholar]
- Xue, Z.; Wilson, C.; Bentley, S.J.; Xu, K.; Liu, H.; Li, C.; Miner, M.D. Quantifying Sediment Characteristics and Infilling Rate within a Ship Shoal Dredge Borrow Area, Offshore Louisiana. In Proceedings of the AGU Fall Meeting Abstracts, New Orleans, LA, USA, 11–15 December 2017. [Google Scholar]
- Pearce, D.W. Valuing the Environment: Past Practice, Future Prospect; Citeseerx, Pennsylvania State University, USA: Centre County, PA, USA, 1994. [Google Scholar]
- Nairn, R.; Johnson, J.A.; Hardin, D.; Michel, J. A biological and physical monitoring program to evaluate long-term impacts from sand dredging operations in the United States outer continental shelf. J. Coast. Res. 2004, 20, 126–137. [Google Scholar] [CrossRef]
- Munnelly, R.T.; Reeves, D.B.; Chesney, E.J.; Baltz, D.M. Summertime hydrography of the nearshore Louisiana Continental Shelf: Effects of riverine outflow, shelf morphology, and the presence of sand shoals on water quality. Cont. Shelf Res. 2019, 179, 18–36. [Google Scholar] [CrossRef]
- Liu, H.; Xu, K.; Bentley, S.; Wilson, C.; Xue, Z.; Miner, M. Sediment transport and geomorphologic response in multiple dredge pits near Ship Shoal of coastal Louisiana. In Proceedings of the AGU Fall Meeting Abstracts, Washington, DC, USA, 10–14 December 2018. [Google Scholar]
- Xu, K.; Corbett, D.; Walsh, J.; Young, D.; Briggs, K.; Cartwright, G.; Friedrichs, C.; Harris, C.; Mickey, R.; Mitra, S. Seabed erodibility variations on the Louisiana continental shelf before and after the 2011 Mississippi River flood. Estuar. Coast. Shelf Sci. 2014, 149, 283–293. [Google Scholar] [CrossRef]
- Denny, J.; Baldwin, W.; Schwab, W.; Gayes, P.; Morton, R.; Driscoll, N. Morphology and Texture of Modern Sediments on the Inner Shelf of South Carolina’s Long Bay from Little River Inlet to Winyah Bay; No. 2331-1258; US Geological Survey: Reston, VA, USA, 2007.
- Freeman, A.M.; Roberts, H.H.; Banks, P.D. Hurricane impact analysis of a Louisiana shallow coastal bay bottom and its shallow subsurface geology. Gulf Coast Assoc. Geol. Soc. Trans. 2007, 255–267. [Google Scholar]
- Karpatne, A.; Ebert-Uphoff, I.; Ravela, S.; Babaie, H.A.; Kumar, V. Machine learning for the geosciences: Challenges and opportunities. IEEE Trans. Knowl. Data Eng. 2018. [Google Scholar] [CrossRef]
- Reichstein, M.; Camps-Valls, G.; Stevens, B.; Jung, M.; Denzler, J.; Carvalhais, N. Deep learning and process understanding for data-driven Earth system science. Nature 2019, 566, 195. [Google Scholar] [CrossRef] [PubMed]
- Diesing, M.; Green, S.L.; Stephens, D.; Lark, R.M.; Stewart, H.A.; Dove, D. Mapping seabed sediments: Comparison of manual, geostatistical, object-based image analysis and machine learning approaches. Cont. Shelf Res. 2014, 84, 107–119. [Google Scholar] [CrossRef] [Green Version]
- Stephens, D.; Diesing, M. A comparison of supervised classification methods for the prediction of substrate type using multibeam acoustic and legacy grain-size data. PLoS ONE 2014, 9, e93950. [Google Scholar] [CrossRef] [PubMed]
- Valentine, A.; Kalnins, L. An introduction to learning algorithms and potential applications in geomorphometry and earth surface dynamics. Earth Surf. Dyn. 2016, 4, 445–460. [Google Scholar] [CrossRef]
- Lacharité, M.; Brown, C.J.; Gazzola, V. Multisource multibeam backscatter data: Developing a strategy for the production of benthic habitat maps using semi-automated seafloor classification methods. Mar. Geophys. Res. 2018, 39, 307–322. [Google Scholar] [CrossRef]
- Blondel, P.; Sichi, O.G. Textural analyses of multibeam sonar imagery from Stanton Banks, Northern Ireland continental shelf. Appl. Acoust. 2009, 70, 1288–1297. [Google Scholar] [CrossRef]
- Penland, S.; Connor, P.F., Jr.; Beall, A.; Fearnley, S.; Williams, S.J. Changes in Louisiana’s shoreline: 1855–2002. J. Coast. Res. 2005, 21, 7–39. [Google Scholar]
- Drucker, B.S.; Waskes, W.; Byrnes, M.R. The US minerals management service outer continental shelf sand and gravel program: Environmental studies to assess the potential effects of offshore dredging operations in federal waters. J. Coast. Res. 2004, 20, 1–5. [Google Scholar] [CrossRef]
- Khalil, S.M.; Finkl, C.W.; Andrews, J.; Knotts, C.P. Restoration-quality sand from Ship Shoal, Louisiana: Geotechnical investigation for sand on a drowned barrier island. In Proceedings of the Coastal Sediments’ 07, New Orleans, Louisiana, 13–17 May 2007; Volume 7, pp. 685–698. [Google Scholar]
- Williams, S.J.; Flocks, J.; Jenkins, C.; Khalil, S.; Moya, J. Offshore sediment character and sand resource assessment of the northern Gulf of Mexico, Florida to Texas. J. Coast. Res. 2012, 30–44. [Google Scholar] [CrossRef]
- Wilson, M.F.; O’Connell, B.; Brown, C.; Guinan, J.C.; Grehan, A.J. Multiscale terrain analysis of multibeam bathymetry data for habitat mapping on the continental slope. Mar. Geod. 2007, 30, 3–35. [Google Scholar] [CrossRef]
- Lecours, V.; Dolan, M.F.; Micallef, A.; Lucieer, V.L. A review of marine geomorphometry, the quantitative study of the seafloor. Hydrol. Earth Syst. Sci. 2016, 20, 3207. [Google Scholar] [CrossRef]
- Walbridge, S.; Slocum, N.; Pobuda, M.; Wright, D. Unified geomorphological analysis workflows with benthic terrain modeler. Geosciences 2018, 8, 94. [Google Scholar] [CrossRef]
- Buhl-Mortensen, P.; Dolan, M.; Buhl-Mortensen, L. Prediction of benthic biotopes on a Norwegian offshore bank using a combination of multivariate analysis and GIS classification. ICES J. Mar. Sci. 2009, 66, 2026–2032. [Google Scholar] [CrossRef]
- Gonzalez-Mirelis, G.; Lindegarth, M. Predicting the distribution of out-of-reach biotopes with decision trees in a Swedish marine protected area. Ecol. Appl. 2012, 22, 2248–2264. [Google Scholar] [CrossRef] [PubMed]
- Ierodiaconou, D.; Monk, J.; Rattray, A.; Laurenson, L.; Versace, V. Comparison of automated classification techniques for predicting benthic biological communities using hydroacoustics and video observations. Cont. Shelf Res. 2011, 31, S28–S38. [Google Scholar] [CrossRef]
- Atkinson, E.J.; Therneau, T.M. An Introduction to Recursive Partitioning Using the RPART Routines; Mayo Foundation: Rochester, NY, USA, 2000. [Google Scholar]
- Breiman, L. Bagging predictors. Mach. Learn. 1996, 24, 123–140. [Google Scholar] [CrossRef] [Green Version]
- Tibshirani, R. Regression shrinkage and selection via the lasso: A retrospective. J. R. Stat. Soc. Ser. B Stat. Methodol. 2011, 73, 273–282. [Google Scholar] [CrossRef]
- Huang, J.; Ling, C.X. Using AUC and accuracy in evaluating learning algorithms. IEEE Trans. Knowl. Data Eng. 2005, 17, 299–310. [Google Scholar] [CrossRef]
- Lundblad, E.R.; Wright, D.J.; Miller, J.; Larkin, E.M.; Rinehart, R.; Naar, D.F.; Donahue, B.T.; Anderson, S.M.; Battista, T. A benthic terrain classification scheme for American Samoa. Mar. Geod. 2006, 29, 89–111. [Google Scholar] [CrossRef]
- Lanier, A.; Romsos, C.; Goldfinger, C. Seafloor habitat mapping on the Oregon continental margin: A spatially nested GIS approach to mapping scale, mapping methods, and accuracy quantification. Mar. Geod. 2007, 30, 51–76. [Google Scholar] [CrossRef]
- Micallef, A.; Le Bas, T.P.; Huvenne, V.A.; Blondel, P.; Hühnerbach, V.; Deidun, A. A multi-method approach for benthic habitat mapping of shallow coastal areas with high-resolution multibeam data. Cont. Shelf Res. 2012, 39, 14–26. [Google Scholar] [CrossRef]
- Micallef, A.; Mountjoy, J.J.; Canals, M.; Lastras, G. Deep-seated bedrock landslides and submarine canyon evolution in an active tectonic margin: Cook Strait, New Zealand. In Submarine Mass Movements and Their Consequences; Springer: Berlin/Heidelberg, Germany, 2012; pp. 201–212. [Google Scholar]
- Dolan, M.F.; Lucieer, V.L. Variation and uncertainty in bathymetric slope calculations using geographic information systems. Mar. Geod. 2014, 37, 187–219. [Google Scholar] [CrossRef]
- Jenness, J.S. Calculating landscape surface area from digital elevation models. Wildl. Soc. Bull. 2004, 32, 829–840. [Google Scholar] [CrossRef]
- Galparsoro, I.; Borja, Á.; Bald, J.; Liria, P.; Chust, G. Predicting suitable habitat for the European lobster (Homarus gammarus), on the Basque continental shelf (Bay of Biscay), using Ecological-Niche Factor Analysis. Ecol. Model. 2009, 220, 556–567. [Google Scholar] [CrossRef]
- Monk, J.; Ierodiaconou, D.; Bellgrove, A.; Harvey, E.; Laurenson, L. Remotely sensed hydroacoustics and observation data for predicting fish habitat suitability. Cont. Shelf Res. 2011, 31, S17–S27. [Google Scholar] [CrossRef]
- Guinan, J.; Brown, C.; Dolan, M.F.; Grehan, A.J. Ecological niche modelling of the distribution of cold-water coral habitat using underwater remote sensing data. Ecol. Inform. 2009, 4, 83–92. [Google Scholar] [CrossRef]
- Ross, L.K.; Ross, R.E.; Stewart, H.A.; Howell, K.L. The influence of data resolution on predicted distribution and estimates of extent of current protection of three ‘listed’ deep-sea habitats. PLoS ONE 2015, 10, e0140061. [Google Scholar] [CrossRef] [PubMed]
- Monk, J.; Ierodiaconou, D.; Versace, V.L.; Bellgrove, A.; Harvey, E.; Rattray, A.; Laurenson, L.; Quinn, G.P. Habitat suitability for marine fishes using presence-only modelling and multibeam sonar. Mar. Ecol. Prog. Ser. 2010, 420, 157–174. [Google Scholar] [CrossRef] [Green Version]
- Pirtle, J.L.; Weber, T.C.; Wilson, C.D.; Rooper, C.N. Assessment of trawlable and untrawlable seafloor using multibeam-derived metrics. Methods Oceanogr. 2015, 12, 18–35. [Google Scholar] [CrossRef]
- Dunn, D.C.; Halpin, P.N. Rugosity-based regional modeling of hard-bottom habitat. Mar. Ecol. Prog. Ser. 2009, 377, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Tempera, F.; Giacomello, E.; Mitchell, N.C.; Campos, A.S.; Henriques, A.B.; Bashmachnikov, I.; Martins, A.; Mendonça, A.; Morato, T.; Colaço, A. Mapping Condor seamount seafloor environment and associated biological assemblages (Azores, NE Atlantic). In Seafloor Geomorphology as Benthic Habitat; Elsevier: Amsterdam, The Netherlands, 2012; pp. 807–818. [Google Scholar]
- Elvenes, S. Landscape Mapping in MAREANO; NGU Report 2013.035; Geological Survey of Norway: Trondheim, Norway, 2013. [Google Scholar]
- Hasan, R.C.; Ierodiaconou, D.; Laurenson, L. Combining angular response classification and backscatter imagery segmentation for benthic biological habitat mapping. Estuar. Coast. Shelf Sci. 2012, 97, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Lucieer, V.; Hill, N.A.; Barrett, N.S.; Nichol, S. Do marine substrates ‘look’ and ‘sound’ the same? Supervised classification of multibeam acoustic data using autonomous underwater vehicle images. Estuar. Coast. Shelf Sci. 2013, 117, 94–106. [Google Scholar] [CrossRef]
- Hasan, R.; Ierodiaconou, D.; Monk, J. Evaluation of four supervised learning methods for benthic habitat mapping using backscatter from multi-beam sonar. Remote Sens. 2012, 4, 3427–3443. [Google Scholar] [CrossRef]
- Marsh, I.; Brown, C. Neural network classification of multibeam backscatter and bathymetry data from Stanton Bank (Area IV). Appl. Acoust. 2009, 70, 1269–1276. [Google Scholar] [CrossRef]
- Liu, H.; Zheng, Z.; Wang, J.; He, S. A comparison of supervised classification methods for prediction and mapping of sediment types with multibeam bathymetry and backscatter data in Buzzards Bay, Massachusetts. In Proceedings of the AGU Fall Meeting Abstracts, Washington, DC, USA, 10–14 December 2018. [Google Scholar]
- Brown, C.J.; Collier, J.S. Mapping benthic habitat in regions of gradational substrata: An automated approach utilising geophysical, geological, and biological relationships. Estuar. Coast. Shelf Sci. 2008, 78, 203–214. [Google Scholar] [CrossRef]
- Xu, K.; Bargu, S.; Bentley, S.J.; Duplantis, B.; Li, C.; Maiti, K.; Miner, M.D.; White, J.R.; Wilson, C.; Xue, Z.G. Sediment Transport and Water Quality of a Dredge Pit on Louisiana Shelf for Coastal Restoration. In Proceedings of the AGU Fall Meeting Abstracts, Washington, DC, USA, 10–14 December 2018. [Google Scholar]
Derivative Features | Variables Names |
---|---|
Seabed curvature | Curvature |
Bathymetric position index (BPI) | BPI_20 m |
Terrain variability | Backscatter_roughness, Bathymetry_roughness Rugosity_backscatter |
Feature | Score |
---|---|
Backscatter | 16.77 |
Roughness_bathymetry | 2.39 |
Rugosity_backscatter | 2.28 |
Bathymetry | 1.51 |
Roughness_backscatter | 0.76 |
BPI_20 | 0.20 |
Model | Accuracy (Stand Deviation) | AUC |
---|---|---|
RF1 | 0.82 (0.12) | 0.93 |
CT1 | 0.84 (0.13) | 0.85 |
Logit_Lasso1 | 0.83 (0.09) | 0.93 |
RF2 | 0.85 (0.12) | 0.92 |
CT2 | 0.84 (0.13) | 0.85 |
Logit_Lasso2 | 0.84 (0.12) | 0.93 |
RF3 | 0.90 (0.10) | 0.95 |
CT3 | 0.87 (0.1) | 0.85 |
Logit_Lasso2 | 0.84 (0.12) | 0.94 |
Slop | Orientation | Curvature | Terrain Variability | |
---|---|---|---|---|
Terrain attributes and examples | (1) Basic slope (steepest) (2) Directional slope | (1) Aspect (2) Northness (3) Eastness | (1) Mean curvature (2) Profile curvature) (3) Plan curvature (4) Bathymetric position index (BPI) | (1) Rugosity (2) Vector ruggedness measure (VRM) (3) Bathymetric Roughness (4) Relative relief (5) The fractal dimension |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, H.; Xu, K.; Li, B.; Han, Y.; Li, G. Sediment Identification Using Machine Learning Classifiers in a Mixed-Texture Dredge Pit of Louisiana Shelf for Coastal Restoration. Water 2019, 11, 1257. https://doi.org/10.3390/w11061257
Liu H, Xu K, Li B, Han Y, Li G. Sediment Identification Using Machine Learning Classifiers in a Mixed-Texture Dredge Pit of Louisiana Shelf for Coastal Restoration. Water. 2019; 11(6):1257. https://doi.org/10.3390/w11061257
Chicago/Turabian StyleLiu, Haoran, Kehui Xu, Bin Li, Ya Han, and Guandong Li. 2019. "Sediment Identification Using Machine Learning Classifiers in a Mixed-Texture Dredge Pit of Louisiana Shelf for Coastal Restoration" Water 11, no. 6: 1257. https://doi.org/10.3390/w11061257