Design and Optimization of a Fully-Penetrating Riverbank Filtration Well Scheme at a Fully-Penetrating River Based on Analytical Methods
Abstract
:1. Introduction
2. Scenarios and Methods
2.1. Scenarios
2.2. Argument Method of Water Supply Capacity of Rws
2.2.1. Scenario I: A Single Pumping Well Off-Riverside
2.2.2. Scenario II: A Single Pumping Well along a Linear Riverside
2.2.3. Scenario III: A Well Group along a Linear Riverside
2.3. Method of Design and Optimization of Well Group of Rws
2.3.1. Constraint Conditions
2.3.2. Parameter Design
2.3.3. Parameter Optimization
3. Case Study
3.1. Study Area and Generalization
3.2. Water Supply Capacity of the RWS
3.3. The Design and Optimization of the Well Group
3.3.1. Constraint Conditions
3.3.2. Parameter Design
3.3.3. Parameter Optimization
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Hu, B.; Teng, Y.; Zhai, Y.; Zuo, R.; Li, J.; Chen, H. Riverbank filtration in China: A review and perspective. J. Hydrol. 2016, 541, 914–927. [Google Scholar] [CrossRef]
- Zhu, Y.; Zhai, Y.; Du, Q.; Teng, Y.; Wang, J.; Yang, G. The impact of well drawdowns on the mixing process of river water and groundwater and water quality in a riverside well field, Northeast China. Hydrol. Process. 2019. [Google Scholar] [CrossRef]
- Yin, W.; Teng, Y.; Zhai, Y.; Hu, L.; Zhao, X.; Zhang, M. Suitability for developing riverside groundwater sources along Songhua River, Northeast China. Hum. Ecol. Risk Assess. 2018, 8, 2088–2100. [Google Scholar] [CrossRef]
- Hester, E.T.; Cardenas, M.B.; Haggerty, R.; Apte, S.V. The importance and challenge of hyporheic mixing. Water Resour. Res. 2017, 53, 3565–3575. [Google Scholar] [CrossRef]
- Steen, C.; Vitaly, A.Z.; Daniel, M.T. On the use of analytical solutions to design pumping tests in leaky aquifers connected to a stream. J. Hydrol. 2010, 381, 341–351. [Google Scholar]
- Baalousha, H.M. Drawdown and stream depletion induced by a nearby pumping well. J. Hydrol. 2012, 466–467, 47–59. [Google Scholar] [CrossRef]
- Jin, M.; Xian, Y.; Liu, Y. Disconnected stream and groundwater interaction: A review. Adv. Water Sci. 2017, 28, 149–160, (In Chinese with English abstract). [Google Scholar]
- Lu, C.; Shu, C.; Chen, X. Numerical analysis of the impacts of bedform on hyporheic exchange. Adv. Water Sci. 2012, 23, 789–795, (In Chinese with English abstract). [Google Scholar]
- Pholkern, K.; Srisuk, K.; Grischek, T.; Soares, M.; Schäfer, S.; Archwichai, L.; Saraphirom, P.; Pavelic, P.; Wirojanagud, W. Riverbed clogging experiments at potential river bank filtration sites along the Ping River, Chiang Mai, Thailand. Environ. Earth Sci. 2015, 73, 7699–7709. [Google Scholar] [CrossRef]
- Grischek, T.; Bartak, R. Riverbed clogging and sustainability of riverbank filtration. Water 2016, 12, 604. [Google Scholar] [CrossRef]
- Shaymaa, M.; Arifah, B.; Zainal, A.A.; Saim, S. Review of the role of analytical modelling methods in riverbank filtration system. J. Teknol. 2014, 1, 59–69. [Google Scholar]
- Knapp, J.L.A.; Cirpka, O.A. Determination of hyporheic travel-time distributions and other parameters from concurrent conservative and reactive tracer tests by local-in-global optimization. Water Resour. Res. 2017, 53, 4984–5001. [Google Scholar] [CrossRef]
- Xie, Y.; Peter, G.C.; Craig, T.S.; Zheng, C. On the limits of heat as a tracer to estimate reach-scale river-aquifer exchange flux. Water Resour. Res. 2015, 51, 7401–7416. [Google Scholar] [CrossRef] [Green Version]
- Stefania, G.A.; Rotiroti, M.; Fumagalli, L.; Simonetto, F.; Capodaglio, P.; Zanotti, C.; Bonomi, T. Modeling groundwater/surface-water interactions in an Alpine valley (the Aosta Plain, NW Italy): The effect of groundwater abstraction on surface-water resources. Hydrogeol. J. 2018, 26, 147–162. [Google Scholar] [CrossRef]
- Wen, Z.; Zhan, H.; Wang, Q.; Liang, X.; Ma, T.; Chen, C. Well hydraulics in pumping tests with exponentially decayed rates of abstraction in confined aquifers. J. Hydrol. 2017, 548, 40–45. [Google Scholar] [CrossRef]
- Xie, X.; Johnson, T.M.; Wang, Y.; Lundstrom, C.C.; Ellis, A.; Wang, X.; Duan, M.; Li, J. Pathways of arsenic from sediments to groundwater in the hyporheic zone: Evidence from an iron isotope study. J. Hydrol. 2014, 511, 509–517. [Google Scholar] [CrossRef]
- Cardenas, M.B. Hyporheic zone hydrologic science: A historical account of its emergence and a prospectus. Water Resour. Res. 2015, 51, 3601–3616. [Google Scholar] [CrossRef] [Green Version]
- Gökçe, Ş.; Ayvaz, M.T. Evaluation of Harmony Search and Differential Evolution Optimization Algorithms on Solving the Booster Station Optimization Problems in Water Distribution Networks; Springer: Cham, Switzerland, 2015; pp. 245–261. [Google Scholar]
- Miracapillo, C.; Morel-Seytoux, H.J. Analytical solutions for stream-aquifer flow exchange under varying head asymmetry and river penetration: Comparison to numerical solutions and use in regional groundwater models. Water Resour. Res. 2014, 50, 7430–7444. [Google Scholar] [CrossRef] [Green Version]
- Hamann, E.; Stuyfzand, P.J.; Greskowiak, J.; Timmer, H.; Massmann, G. The fate of organic micropollutants during long-term/long-distance river bank filtration. Sci. Total Environ. 2015, 545–546, 629–640. [Google Scholar] [CrossRef] [PubMed]
- Salamon, E.; Goda, Z. Coupling riverbank filtration with reverse osmosis may favor short distances between wells and riverbanks at RBF sites on the River Danube in Hungary. Water 2019, 11, 113. [Google Scholar] [CrossRef]
- Mantoglou, A.; Papantoniou, M.; Giannoulopoulos, P. Management of coastal aquifers based on nonlinear optimization and evolutionary algorithms. J. Hydrol. 2004, 297, 209–228. [Google Scholar] [CrossRef]
- Jin-Yong, L.; Kang-Kun, L.; Se-Yeong, H.; Yongcheol, K. Fifty years of groundwater science in Korea: A review and perspective. Geosci. J. 2017, 6, 951–969. [Google Scholar]
- Tian, G.L.; Chang, J.B.; Wang, W. Application of analytical method to the calculation of groundwater permissible mining capacity. J. Pearl River 2016, 10, 1–7, (In Chinese with English abstract). [Google Scholar]
- Hansen, A.K.; Franssen, H.J.H.; Bauer-Gottwein, P.; Madsen, H.; Rosbjerg, D.; Kaiser, H.P. Well field management using multi-objective optimization. Water Resour. Manag. 2013, 27, 629–648. [Google Scholar] [CrossRef]
- Polomčić, D.; Hajdin, B.; Stevanović, Z.; Bajić, D.; Hajdin, K. Groundwater management by riverbank filtration and an infiltration channel: The case of Obrenovac, Serbia. Hydrogeol. J. 2013, 21, 1519–1530. [Google Scholar] [CrossRef]
- Lee, E.; Hyun, Y.; Lee, K.K.; Shin, J. Hydraulic analysis of a radial collector well for riverbank filtration near Nakdong River, South Korea. Hydrogeol. J. 2012, 20, 575–589. [Google Scholar] [CrossRef]
- AbdelFattah, A.; Langford, R.; SchulzeMakuch, D. Applications of particle-tracking techniques to bank infiltration: A case study from El Paso, Texas, USA. Environ. Geol. 2008, 55, 505–515. [Google Scholar] [CrossRef]
- Fragoso, T.; Cunha, M.D.C.; LoboFerreira, J.P. Optimal pumping from Palmela water supply wells (Portugal) using simulated annealing. Hydrogeol. J. 2009, 17, 1935–1948. [Google Scholar] [CrossRef]
- Haas, R.; Opitz, R.; Grischek, T.; Otter, P. The AquaNES Project: Coupling riverbank filtration and ultrafiltration in drinking water treatment. Water 2019, 11, 18. [Google Scholar] [CrossRef]
- Hunt, B. Unsteady stream depletion from ground water pumping. Ground Water 1999, 37, 98–102. [Google Scholar] [CrossRef]
- Bear, J. Hydraulics of Groundwater; McGraw-Hill: New York, NY, USA, 1979. [Google Scholar]
- Wen, C.; Dong, W.; Cui, G.; Liu, Y.; Su, X. Application of analytical methods to determination of the exploitation scheme of a wellfield at riverside. Hydrogeol. Eng. Geol. 2017, 3, 19–26, (In Chinese with English abstract). [Google Scholar]
- Gaur, S.; Mimoun, D.; Graillot, D. Advantages of the analytic element method for the solution of groundwater management problems. Hydrol. Process. 2011, 25, 3426–3436. [Google Scholar] [CrossRef]
- Li, Y.; Li, Z. The analytical method for rationally distributing interference well group. J. Xi’an Coll. Geol. 1997, S1, 47–50, (In Chinese with English abstract). [Google Scholar]
- Katsifarakis, K.L. Groundwater pumping cost minimization-an analytical approach. Water Resour. Manag. 2008, 22, 1089–1099. [Google Scholar] [CrossRef]
- Hoehn, E.; Scholtis, A. Exchange between a river and groundwater, assessed with hydrochemical data. Hydrol. Earth Syst. Sci. 2011, 15, 983–988. [Google Scholar] [CrossRef] [Green Version]
- Theis, C.V. The effect of a well on the flow of a nearby stream. Trans. Am. Geophys. Union 1941, 22, 734–738. [Google Scholar] [CrossRef]
- Wang, P.; Sergey, P.P.; Vsevolod, M.S. Optimum experimental design of a monitoring network for parameter identification at riverbank well fields. J. Hydrol. 2015, 523, 531–541. [Google Scholar] [CrossRef] [Green Version]
- Hund-Der, Y.; Ya-Chi, C. Recent advances in modeling of well hydraulics. Adv. Water Resour. 2013, 51, 27–51. [Google Scholar]
- Wang, Y.; Zheng, C.; Ma, R. Review: Safe and sustainable groundwater supply in China. Hydrogeol. J. 2018, 26, 1301–1324. [Google Scholar] [CrossRef]
- Holzbecher, E. Analytical solution for well design with respect to discharge ratio. Groundwater 2013, 1, 128–134. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Susan, H.; Finsterle, S. Factors governing sustainable groundwater pumping near a river. Groundwater 2011, 3, 432–444. [Google Scholar] [CrossRef] [PubMed]
- Mojtaba, S.; Javad, D.S.M. Optimum pumping well placement and capacity design for a groundwater lowering system in urban areas with the minimum cost objective. Water Resour. Manag. 2017, 13, 4207–4225. [Google Scholar]
- Rao, S.V.N.; Sudhir, K.; Shashank, S.; Sinha, S.K.; Manju, S. Optimal pumping from skimming wells from the Yamuna River flood plain in north India. Hydrogeol. J. 2007, 6, 1157–1167. [Google Scholar] [CrossRef]
- Hantush, M.S. Wells near streams with semipervious beds. J. Geophys. Res. 1965, 70, 2829–2838. [Google Scholar] [CrossRef]
- Van Driezum, I.H.; Derx, J.; Oudega, T.J.; Zessner, M.; Naus, F.L.; Saracevic, E.; Kirschner, A.K.T.; Sommer, R.; Farnleitner, A.H.; Blaschke, A.P. Spatiotemporal resolved sampling for the interpretation of micropollutant removal during riverbank filtration. Sci. Total Environ. 2019, 649, 212–223. [Google Scholar] [CrossRef] [PubMed]
- Brunner, P.R.; Therrien, P.R.; Simmons, C.T.; Franssen, H.J.H. Advances in understanding river-groundwater interactions. Rev. Geophys. 2017, 3, 818–854. [Google Scholar] [CrossRef]
- Ray, C. Worldwide potential of riverbank filtration. Clean Technol. Environ. Policy 2008, 10, 223–225. [Google Scholar] [CrossRef]
- Ahmed, K.A.A. Review on river bank filtration as an in situ water treatment process. Clean Technol. Environ. Policy 2017, 2, 349–359. [Google Scholar] [CrossRef]
No. | N | Dww (m) | Dwr (m) | q (m3/d) | Q (×105 m3/d) | Result * |
---|---|---|---|---|---|---|
1 | 11 | 20 | 20 | 22,754 | 2.50 | AB |
2 | 11 | 50 | 20 | 28,022 | 3.08 | AB |
3 | 11 | 100 | 20 | 29,629 | 3.26 | ABC |
4 | 11 | 200 | 20 | 30,135 | 3.32 | AB |
5 | 11 | 250 | 20 | 30,199 | 3.32 | AB |
6 | 11 | 20 | 50 | 14,021 | 1.54 | A |
7 | 11 | 50 | 50 | 20,038 | 2.20 | AB |
8 | 11 | 100 | 50 | 23,330 | 2.57 | ABCD |
9 | 11 | 200 | 50 | 24,935 | 2.74 | AB |
10 | 11 | 250 | 50 | 25,185 | 2.77 | AB |
11 | 11 | 20 | 100 | 9555 | 1.05 | A |
12 | 11 | 50 | 100 | 14,499 | 1.60 | A |
13 | 11 | 100 | 100 | 18,379 | 2.02 | ABCDE |
14 | 11 | 200 | 100 | 21,111 | 2.32 | AB |
15 | 11 | 250 | 100 | 21,670 | 2.38 | AB |
16 | 11 | 20 | 150 | 7763 | 0.85 | A |
17 | 11 | 50 | 150 | 11,772 | 1.30 | A |
18 | 11 | 100 | 150 | 15,523 | 1.71 | A |
19 | 11 | 200 | 150 | 18,723 | 2.06 | AB |
20 | 11 | 250 | 150 | 19,485 | 2.14 | AB |
21 | 11 | 20 | 200 | 6785 | 0.75 | A |
22 | 11 | 50 | 200 | 10,135 | 1.12 | A |
23 | 11 | 100 | 200 | 13,610 | 14.97 | A |
24 | 11 | 200 | 200 | 16,974 | 1.87 | A |
25 | 11 | 250 | 200 | 17,858 | 1.96 | A |
26 | 9 | 20 | 20 | 22,902 | 2.06 | AB |
27 | 9 | 50 | 20 | 28,058 | 2.53 | AB |
28 | 9 | 100 | 20 | 29,639 | 2.67 | ABC |
29 | 9 | 200 | 20 | 30,137 | 2.71 | AB |
30 | 9 | 250 | 20 | 30,201 | 2.72 | AB |
31 | 9 | 20 | 50 | 14,343 | 1.29 | A |
32 | 9 | 50 | 50 | 20,153 | 1.81 | A |
33 | 9 | 100 | 50 | 23,370 | 2.10 | ABCDE |
34 | 9 | 200 | 50 | 24,946 | 2.25 | AB |
35 | 9 | 250 | 50 | 25,193 | 2.27 | AB |
36 | 9 | 20 | 100 | 10,020 | 0.90 | A |
37 | 9 | 50 | 100 | 14,727 | 1.33 | A |
38 | 9 | 100 | 100 | 18,476 | 1.66 | A |
39 | 9 | 200 | 100 | 21,144 | 1.90 | A |
40 | 9 | 250 | 100 | 21,692 | 1.95 | A |
41 | 9 | 20 | 150 | 8287 | 0.75 | A |
42 | 9 | 50 | 150 | 12,085 | 1.09 | A |
43 | 9 | 100 | 150 | 15,675 | 1.41 | A |
44 | 9 | 200 | 150 | 18,779 | 1.70 | A |
45 | 9 | 250 | 150 | 19,525 | 1.76 | A |
46 | 9 | 20 | 200 | 7333 | 0.66 | A |
47 | 9 | 50 | 200 | 10,507 | 0.95 | A |
48 | 9 | 100 | 200 | 13,811 | 1.24 | A |
49 | 9 | 200 | 200 | 17,056 | 1.54 | A |
50 | 9 | 250 | 200 | 17,917 | 1.61 | A |
51 | 7 | 20 | 20 | 23,141 | 1.62 | A |
52 | 7 | 50 | 20 | 28,117 | 1.97 | A |
53 | 7 | 100 | 20 | 29,656 | 2.08 | AB |
54 | 7 | 200 | 20 | 30,142 | 2.11 | ABC |
55 | 7 | 250 | 20 | 30,204 | 2.11 | AB |
56 | 7 | 20 | 50 | 14,857 | 1.04 | A |
57 | 7 | 50 | 50 | 20,338 | 1.42 | A |
58 | 7 | 100 | 50 | 23,433 | 1.64 | A |
59 | 7 | 200 | 50 | 24,964 | 1.75 | A |
60 | 7 | 250 | 50 | 25,204 | 1.76 | A |
61 | 7 | 20 | 100 | 10,738 | 0.75 | A |
62 | 7 | 50 | 100 | 15,092 | 1.06 | A |
63 | 7 | 100 | 100 | 18,631 | 1.30 | A |
64 | 7 | 200 | 100 | 21,196 | 1.48 | A |
65 | 7 | 250 | 100 | 21,727 | 1.52 | A |
66 | 7 | 20 | 150 | 9077 | 0.64 | A |
67 | 7 | 50 | 150 | 12,577 | 0.88 | A |
68 | 7 | 100 | 150 | 15,918 | 1.11 | A |
69 | 7 | 200 | 150 | 18,871 | 1.32 | A |
70 | 7 | 250 | 150 | 19,588 | 1.37 | A |
71 | 7 | 20 | 200 | 8148 | 0.57 | A |
72 | 7 | 50 | 200 | 11,086 | 0.78 | A |
73 | 7 | 100 | 200 | 14,132 | 0.99 | A |
74 | 7 | 200 | 200 | 17,188 | 1.20 | A |
75 | 7 | 250 | 200 | 18,011 | 1.26 | A |
No. | N | Dww (m) | Dwr (m) | q (m3/d) | q′ (m3/d) | α (%) |
---|---|---|---|---|---|---|
1 | 11 | 20 | 20 | 22,753.5 | 69,805.6 | 67.40 |
2 | 11 | 50 | 20 | 28,021.8 | 69,805.6 | 59.86 |
3 | 11 | 100 | 20 | 29,629.2 | 69,805.6 | 57.55 |
4 | 11 | 200 | 20 | 30,134.7 | 69,805.6 | 56.83 |
5 | 11 | 250 | 20 | 30,199.2 | 69,805.6 | 56.74 |
6 | 11 | 50 | 50 | 20,038.2 | 59,130.1 | 66.11 |
7 | 11 | 100 | 50 | 23,330.2 | 59,130.1 | 60.54 |
8 | 11 | 200 | 50 | 24,934.7 | 59,130.1 | 57.83 |
9 | 11 | 250 | 50 | 25,185.2 | 59,130.1 | 57.41 |
10 | 11 | 100 | 100 | 18,379.0 | 52,998.7 | 65.32 |
11 | 11 | 200 | 100 | 21,111.3 | 52,998.7 | 60.17 |
12 | 11 | 250 | 100 | 21,669.9 | 52,998.7 | 59.11 |
13 | 11 | 200 | 150 | 18,722.6 | 49,967.8 | 62.53 |
14 | 11 | 250 | 150 | 19,485.1 | 49,967.8 | 61.00 |
15 | 9 | 20 | 20 | 22,901.5 | 69,805.6 | 67.19 |
16 | 9 | 50 | 20 | 28,058.2 | 69,805.6 | 59.81 |
17 | 9 | 100 | 20 | 29,639.4 | 69,805.6 | 57.54 |
18 | 9 | 200 | 20 | 30,137.3 | 69,805.6 | 56.83 |
19 | 9 | 250 | 20 | 30,200.9 | 69,805.6 | 56.74 |
20 | 9 | 100 | 50 | 23,369.6 | 59,130.1 | 60.48 |
21 | 9 | 200 | 50 | 24,946.0 | 59,130.1 | 57.81 |
22 | 9 | 250 | 50 | 25,192.6 | 59,130.1 | 57.39 |
23 | 7 | 100 | 20 | 29,655.8 | 69,805.6 | 57.52 |
24 | 7 | 200 | 20 | 30,141.6 | 69,805.6 | 56.82 |
25 | 7 | 250 | 20 | 30,203.6 | 69,805.6 | 56.73 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, Y.; Zhang, J.; Zhu, Y.; Du, Q.; Teng, Y.; Zhai, Y. Design and Optimization of a Fully-Penetrating Riverbank Filtration Well Scheme at a Fully-Penetrating River Based on Analytical Methods. Water 2019, 11, 418. https://doi.org/10.3390/w11030418
Jiang Y, Zhang J, Zhu Y, Du Q, Teng Y, Zhai Y. Design and Optimization of a Fully-Penetrating Riverbank Filtration Well Scheme at a Fully-Penetrating River Based on Analytical Methods. Water. 2019; 11(3):418. https://doi.org/10.3390/w11030418
Chicago/Turabian StyleJiang, Ya, Junjun Zhang, Yaguang Zhu, Qingqing Du, Yanguo Teng, and Yuanzheng Zhai. 2019. "Design and Optimization of a Fully-Penetrating Riverbank Filtration Well Scheme at a Fully-Penetrating River Based on Analytical Methods" Water 11, no. 3: 418. https://doi.org/10.3390/w11030418
APA StyleJiang, Y., Zhang, J., Zhu, Y., Du, Q., Teng, Y., & Zhai, Y. (2019). Design and Optimization of a Fully-Penetrating Riverbank Filtration Well Scheme at a Fully-Penetrating River Based on Analytical Methods. Water, 11(3), 418. https://doi.org/10.3390/w11030418