The Use of Stable Isotope-Based Water Age to Evaluate a Hydrodynamic Model
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description
2.2. Isotopic Water Age
2.3. Hydrodynamic Model
2.4. Predicted Water Age Calculation
2.5. Fractional Evaporation Calculation
3. Results
3.1. Hydrodynamic Model Calibration
3.2. Sacramento River Water Age
3.3. Sacramento River Water Fractional Evaporation
3.4. Evaluation of Assumptions in Age Estimates
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Lucas, L.V. Implications of estuarine transport for water quality. In Contemporary Issues in Estuarine Physics; Valle-Levinson, A., Ed.; Cambridge University Press: Cambridge, UK, 2010; pp. 273–307. ISBN 978-0-511-67656-7. [Google Scholar]
- Cloern, J.E. Habitat Connectivity and Ecosystem Productivity: Implications from a Simple Model. Am. Nat. 2007, 169, E21–E33. [Google Scholar] [CrossRef] [PubMed]
- Monsen, N.E.; Cloern, J.E.; Lucas, L.V.; Monismith, S.G. A comment on the use of flushing time, residence time, and age as transport time scales. Limnol. Oceanogr. 2002, 47, 1545–1553. [Google Scholar] [CrossRef][Green Version]
- Downing, B.D.; Bergamaschi, B.A.; Kendall, C.; Kraus, T.E.C.; Dennis, K.J.; Carter, J.A.; Von Dessonneck, T.S. Using Continuous Underway Isotope Measurements to Map Water Residence Time in Hydrodynamically Complex Tidal Environments. Environ. Sci. Technol. 2016, 50, 13387–13396. [Google Scholar] [CrossRef] [PubMed]
- Delhez, E.J.M.; Campin, J.-M.; Hirst, A.C.; Deleersnijder, E. Toward a general theory of the age in ocean modelling. Ocean Model. 1999, 1, 17–27. [Google Scholar] [CrossRef][Green Version]
- Deleersnijder, E.; Campin, J.-M.; Delhez, E.J.M. The concept of age in marine modelling I. Theory and preliminary model results. J. Mar. Syst. 2001, 28, 229–267. [Google Scholar] [CrossRef]
- Delhez, É.J.M.; Deleersnijder, É.; Mouchet, A.; Beckers, J.-M. A note on the age of radioactive tracers. J. Mar. Syst. 2003, 38, 277–286. [Google Scholar] [CrossRef]
- Monitoring and Assessing Water Quality—Volunteer Monitoring|Monitoring & Assessment|US EPA. Available online: https://archive.epa.gov/water/archive/web/html/index-18.html (accessed on 14 December 2018).
- Atwater, B.F. San Francisco Bay: The urbanized estuary: Investigations into the Natural History of San Francisco Bay and Delta with Reference to the Influence of Man; Conard, S.G., Dowden, J.N., Hedel, C.W., MacDonald, R.L., Savage, Eds.; The Division: San Francisco, CA, USA, 1979; ISBN 978-0-934394-01-7. [Google Scholar]
- Morgan-King, T.L.; Schoellhamer, D.H. Suspended-Sediment Flux and Retention in a Backwater Tidal Slough Complex near the Landward Boundary of an Estuary. Estuaries Coasts 2013, 36, 300–318. [Google Scholar] [CrossRef]
- [CIMIS] California Irrigation Management Information System. Available online: https://cimis.water.ca.gov/ (accessed on 5 July 2016).
- Casulli, V.; Walters, R.A. An unstructured grid, three-dimensional model based on the shallow water equations. Int. J. Numer. Methods Fluids 2000, 32, 331–348. [Google Scholar] [CrossRef]
- Casulli, V.; Stelling, G.S. Semi-implicit subgrid modelling of three-dimensional free-surface flows. Int. J. Numer. Meth. Fluids 2011, 67, 441–449. [Google Scholar] [CrossRef]
- Casulli, V. A high-resolution wetting and drying algorithm for free-surface hydrodynamics. Int. J. Numer. Meth. Fluids 2009, 60, 391–408. [Google Scholar] [CrossRef]
- Warner, J.C.; Sherwood, C.R.; Arango, H.G.; Signell, R.P. Performance of four turbulence closure models implemented using a generic length scale method. Ocean Model. 2005, 8, 81–113. [Google Scholar] [CrossRef]
- Wang, R.; Ateljevich, E. San Francisco Bay and Sacramento-San Joaquin Delta DEM. Available online: http://baydeltaoffice.water.ca.gov/modeling/deltamodeling/modelingdata/DEM.cfm (accessed on 18 June 2019).
- Foxgrover, A.C.; Finlayson, D.P.; Jaffe, B.E.; Fregoso, T.A. Bathymetry and Digital Elevation Models of Coyote Creek and Alviso Slough, South San Francisco Bay, California; US Department of the Interior, US Geological Survey: Washington, DC, USA, 2018.
- Fregoso, T.A.; Wang, R.-F.; Alteljevich, E.; Jaffe, B.E. San Francisco Bay Delta Bathymetric/Topographic digital elevation model (DEM). In 2016 SF Bay Delta DEM 10-m. Available online: https://www.sciencebase.gov/catalog/item/58599681e4b01224f329b484 (accessed on 14 December 2018).
- Delta Bathymetry. Available online: https://gis.water.ca.gov/app/bathymetry/ (accessed on 14 December 2018).
- Kimmerer, W.J.; Gross, E.S.; Slaughter, A.M.; Durand, J.R. Spatial Subsidies and Mortality of an Estuarine Copepod Revealed Using a Box Model. Estuaries Coasts 2019, 42, 218–236. [Google Scholar] [CrossRef]
- [CDWR] California Department of Water Resources. Available online: http://cdec.water.ca.gov/reportapp/javareports?name=wsihist (accessed on 5 July 2016).
- [USGS] Water Data for USA. Available online: https://waterdata.usgs.gov/nwis (accessed on 14 December 2018).
- [CDWR] DCD: Delta Channel Depletion. Available online: http://water.ca.gov/Library/Modeling-and-Analysis/Bay-Delta-Region-models-and-tools/DCD (accessed on 14 December 2018).
- Dayflow. Available online: http://water.ca.gov/Programs/Environmental-Services/Compliance-Monitoring-And-Assessment/Dayflow-Data (accessed on 14 December 2018).
- Willmott, C.J. On the Validation of Models. Phys. Geogr. 1981, 2, 184–194. [Google Scholar] [CrossRef]
- Andrews, S.W.; Gross, E.S.; Hutton, P.H. Modeling salt intrusion in the San Francisco Estuary prior to anthropogenic influence. Cont. Shelf Res. 2017, 146, 58–81. [Google Scholar] [CrossRef]
- Jolliff, J.K.; Kindle, J.C.; Shulman, I.; Penta, B.; Friedrichs, M.A.M.; Helber, R.; Arnone, R.A. Summary diagrams for coupled hydrodynamic-ecosystem model skill assessment. J. Mar. Syst. 2009, 76, 64–82. [Google Scholar] [CrossRef]
- MacWilliams, M.; Bever, A.; Gross, E.; Ketefian, G.; Kimmerer, W. Three-Dimensional Modeling of Hydrodynamics and Salinity in the San Francisco Estuary: An Evaluation of Model Accuracy, X2, and the Low-Salinity Zone. San Fr. Estuary Watershed Sci. 2015, 13. [Google Scholar] [CrossRef][Green Version]
- [USGS] U.S. Geological Survey. Available online: https://sfbay.wr.usgs.gov/access/wqdata/index.html (accessed on 14 December 2018).
- Casulli, V.; Zanolli, P. High resolution methods for multidimensional advection–diffusion problems in free-surface hydrodynamics. Ocean Model. 2005, 10, 137–151. [Google Scholar] [CrossRef]
- Rayson, M.D.; Gross, E.S.; Hetland, R.D.; Fringer, O.B. Time scales in Galveston Bay: An unsteady estuary. J. Geophys. Res. 2016, 121, 2268–2285. [Google Scholar] [CrossRef][Green Version]
- Martyr-Koller, R.C.; Kernkamp, H.W.J.; van Dam, A.; van der Wegen, M.; Lucas, L.V.; Knowles, N.; Jaffe, B.; Fregoso, T.A. Application of an unstructured 3D finite volume numerical model to flows and salinity dynamics in the San Francisco Bay-Delta. Estuar. Coast. Shelf Sci. 2017, 192, 86–107. [Google Scholar] [CrossRef]
- Kimmerer, W.; Wilkerson, F.; Downing, B.; Dugdale, R.; Gross, E.; Kayfetz, K.; Khanna, S.; Parker, A.; Thompson, J. Effects of Drought and the Emergency Drought Barrier on the Ecosystem of the California Delta. San Fr. Estuary Watershed Sci. 2019, 17. [Google Scholar] [CrossRef]
- CDEC Report Products. Available online: http://cdec.water.ca.gov/reportapp/javareports?name=WSIHIST) (accessed on 14 December 2018).
Flow Category | Flow (m3s−1) |
---|---|
Total Delta inflow | 251.29 |
Total Delta exports | −100.91 |
Total Delta agricultural withdrawals | 32.84 |
Total Delta agricultural returns | 23.46 |
Parameter | R2 | Skill |
---|---|---|
Water level | 0.990 | 0.969 |
Flow | 0.969 | 0.985 |
Salinity | 0.690 | 0.724 |
Parameter | R2 | Skill |
---|---|---|
Salinity | 0.00397 | −3.330 |
Water Age | 0.867 | 0.841 |
Fractional Evaporation | 0.684 | 0.559 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gross, E.; Andrews, S.; Bergamaschi, B.; Downing, B.; Holleman, R.; Burdick, S.; Durand, J. The Use of Stable Isotope-Based Water Age to Evaluate a Hydrodynamic Model. Water 2019, 11, 2207. https://doi.org/10.3390/w11112207
Gross E, Andrews S, Bergamaschi B, Downing B, Holleman R, Burdick S, Durand J. The Use of Stable Isotope-Based Water Age to Evaluate a Hydrodynamic Model. Water. 2019; 11(11):2207. https://doi.org/10.3390/w11112207
Chicago/Turabian StyleGross, Edward, Stephen Andrews, Brian Bergamaschi, Bryan Downing, Rusty Holleman, Scott Burdick, and John Durand. 2019. "The Use of Stable Isotope-Based Water Age to Evaluate a Hydrodynamic Model" Water 11, no. 11: 2207. https://doi.org/10.3390/w11112207