Regulation of Perfluorooctanoic Acid (PFOA) and Perfluorooctane Sulfonic Acid (PFOS) in Drinking Water: A Comprehensive Review
Abstract
:1. Introduction
2. Authority to Regulate
- The contaminant may have an adverse effect on the health of persons;
- The contaminant is known to occur or there is a substantial likelihood that the contaminant will occur in public water systems with a frequency and at levels of public health concern; and
- The regulation of the contaminant presents meaningful opportunity for health risk reduction for persons served by public water systems.
3. Properties and Uses of PFOA and PFOS
4. Analytical Methods
4.1. USEPA Method 537.1
4.2. Unregulated Contaminant Monitoring
4.3. Minimum Reporting Level (MRL)
4.4. Practical Quantitation Level (PQL)
5. Occurrence in Public Water Systems
6. Human Health Effects
6.1. Exposure Assessment
6.2. Reference Dose
6.3. Carcinogenicity
6.4. Relative Source Contribution (RSC)
6.5. Immunosuppression
6.6. Maximum Contaminant Level Goal (MCLG)
7. Best Available Technology (BAT)
7.1. Conventional Treatment
7.2. Oxidation Processes
7.3. Adsorption
7.4. Anion Exchange
7.5. Membrane Processes
7.6. Treatment Process Selection
8. Best Available Science
9. Costs and Benefits
10. Regulatory Determination
11. Other US Standards and Advisories
12. International Standards
13. Summary and Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- KEMI The Swedish Chemicals Agency. Occurrence and Use of Highly Fluorinated Substances and Alternatives. Report 7/15. 2015. Available online: https://www.kemi.se/global/rapporter/2015/report-7-15-occurrence-and-use-of-highly-fluorinated-substances-and-alternatives.pdf (accessed on 22 September 2019).
- Wang, Z.; Cousins, I.T.; Scheringer, M.; Buck, R.C.; Hungerbuhler, K. Global emission inventories for C4–C14 perfluoroalkyl carboxylic acid (PFCA) homologues from 1951 to 2030, Part I: Production and emissions from quantifiable sources. Environ. Int. 2014, 70, 62–75. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Cousins, I.T.; Scheringer, M.; Buck, R.C.; Hungerbuhler, K. Global emission inventories for C4–C14 perfluoroalkyl carboxylic acid (PFCA) homologues from 1951 to 2030, part II: The remaining pieces of the puzzle. Environ. Int. 2014, 69, 166–176. [Google Scholar] [CrossRef] [PubMed]
- Organization for Economic Co-Operation and Development (OECD). Toward a New Comprehensive Global Database of Per- and Polyfluoroalkyl Substances (PFASs): Summary Report on Updating the OECD 2007 List of Per- and Polyfluoroalkyl Substances (PFASs). Series on Risk Management No. 39, ENV/JM/MONO(2018)7. 4 May 2018. Available online: https://www.oecd.org/chemicalsafety/portal-perfluorinated-chemicals/ (accessed on 19 July 2019).
- Herrick, R.L.; Buckholz, J.; Biro, F.M.; Calafat, A.M.; Ye, X.; Xie, C.; Pinney, S.M. Polyfluoroalkyl substance exposure in the Mid-Ohio River Valley, 1991–2012. Environ. Pollut. 2017, 228, 50–60. [Google Scholar] [CrossRef] [PubMed]
- Patzke, J. Investigating Drinking Water Contamination in Ohio by Per- and Polyfluoroalkyl Substances. Ohio EPA, Division of Drinking and Ground Waters: Columbus, OH, USA, 22 October 2018. [Google Scholar]
- Goeden, H.M.; Greene, C.W.; Jacobus, J.A. A transgenerational toxicokinetic model and its use in derivation of Minnesota PFOA water guidance. J. Expo. Sci. Environ. Epidemol. 2019, 29, 183–195. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- USEPA. Drinking Water Contaminant Candidate List 3 (CCL3)—Final. Fed. Regist. 2009, 74, 51850–51862. [Google Scholar]
- USEPA. Drinking Water Health Advisory for Perfluorooctanoic Acid (PFOA). EPA 822-R-16-005; Office of Water: Washington, DC, USA, May 2016. Available online: https://www.epa.gov/sites/production/files/2016-05/documents/pfoa_health_advisory_final_508.pdf (accessed on 22 September 2019).
- USEPA. Drinking Water Health Advisory for Perfluorooctane Sulfonate (PFOS). EPA 822-R-16-004; Office of Water: Washington, DC, USA, May 2016. Available online: https://www.epa.gov/sites/production/files/2016-05/documents/pfos_health_advisory_final_508.pdf (accessed on 22 September 2019).
- Cordner, A.; De La Rosa, V.Y.; Schaider, L.A.; Rudel, R.A.; Richter, L.; Brown, P. Guideline levels for PFOA and PFOS in drinking water: The role of scientific uncertainty, risk assessment decisions, and social factors. J. Expo. Sci. Environ. Epidemol. 2019, 29, 157–171. [Google Scholar] [CrossRef] [PubMed]
- Reed, J.; Stabenow, D.; Warren, E.; Durban, R.; Manchin, J.; Harris, K.; Gillibrand, K.; Murray, P.; Carper, T.; Coons, C.; et al. Letter from United States Senators to EPA Administrator Scott Pruitt. 13 April 2018. Available online: https://drive.google.com/file/d/1LgpWUVI-wfvSW90LtTzjymSNm_BAZTj1/view (accessed on 22 September 2019).
- USEPA. EPA’s Per- and Polyfluoroalkyl Substances (PFAS) Action Plan. EPA 823R18004; 2009. Available online: https://www.epa.gov/sites/production/files/2019-02/documents/pfas_action_plan_021319_508compliant_1.pdf (accessed on 22 September 2019).
- USEPA. Fact Sheet: EPA’s PFAS Action Plan: A Summary of Key Actions. 2019. Available online: https://www.epa.gov/sites/production/files/2019-02/documents/pfas_action_factsheet_021319_final_508compliant.pdf (accessed on 22 September 2019).
- Public Law 104–182, The Safe Drinking Water Act Amendments of 1996. Available online: https://www.congress.gov/bill/104th-congress/senate-bill/1316 (accessed on 22 September 2019).
- Administrative Conference. A Guide to Federal Agency Rulemaking, 2nd ed.; Office of the Chairman, Administrative Conference of the United States: Washington, DC, USA, 1991.
- USEPA Science Advisory Board. Reducing Risk: Setting Priorities and Strategies for Environmental Protection; SAB-E-90-021; USEPA Science Advisory Board: Washington, DC, USA, 1990.
- Public Law 99–339. 1986 Safe Drinking Water Act Amendments. Sec. 1412(b)(3)(A). Available online: https://www.congress.gov/104/plaws/publ182/PLAW-104publ182.pdf (accessed on 22 September 2019).
- Public Law 104–182. The Safe Drinking Water Act Amendments of 1996. Sec.1412(b)(1)(D). Available online: https://www.congress.gov/104/plaws/publ182/PLAW-104publ182.pdf (accessed on 22 September 2019).
- Buck, R.C.; Franklin, J.; Berger, U.; Conder, J.M.; Cousins, I.T.; De Voogt, P.; Jensen, A.A.; Kannan, K.; Mabury, A.S.; Van Leeuwen, S.P. Perfluoroalkyl and polyfluoroalkyl substances in the environment: Terminology, classification, and origins. Integr. Environ. Assess. Manag. 2011, 7, 513–541. [Google Scholar] [CrossRef]
- Lindstrom, A.B.; Strynar, M.J.; Libelo, E. Polyfluorintated compounds: Past, present, and future. Environ. Sci. Technol. 2011, 45, 7954–7961. [Google Scholar] [CrossRef]
- Barzen-Hanson, K.A.; Roberts, S.C.; Choyke, S.; Oetjen, K.; McAlees, A.; Riddell, N.; McCrindle, R.; Ferguson, P.L.; Higgins, C.P.; Field, J.A. Discovery of 40 Classes of Per- and Polyfluoroalkyl Substances in Historical Aqueous Film-Forming Foams (AFFFs) and AFFF-Impacted Groundwater. Environ. Sci. Technol. 2017, 51, 2047–2057. [Google Scholar] [CrossRef]
- Jian, J.-M.; Guo, Y.; Zeng, L.; Liang-Ying, L.; Lu, X.; Wang, F.; Zeng, E.Y. Global distribution of perfluorochemicals (PFCs) in potential human exposure source—A review. Environ. Int. 2017, 108, 51–62. [Google Scholar] [CrossRef]
- Kunacheva, C.; Shivakoti, B.R.; Lien, N.P.H.; Harada, H. Worldwide surveys of perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA) in water environment in recent years. Water Sci. Technol. 2012. [Google Scholar] [CrossRef] [PubMed]
- Centers for Disease Control and Prevention. Fourth National Report on Human Exposure to Environmental Chemicals, Updated Tables, January 2019; Dept. of Health and Human Services, Centers for Disease Control and Prevention (CDC): Atlanta, GA, USA, 2019. Available online: https://www.cdc.gov/exposurereport/ (accessed on 15 April 2019).
- Agency for Toxic Substances and Disease Registry. Perfluoroalkyl and Polyfluoroalkyl Substances (PFAS) in the U.S. Population; Dept. of Health and Human Services: Atlanta, GA, USA, 2017.
- Interstate Technology Regulatory Council (ITRC). History and Use of Per- and Polyfluoroalkyl Substances (PFAS); ITRC: Washington, DC, USA, 2017. [Google Scholar]
- Wang, Z.W.; DeWitt, J.C.; Higgins, C.P.; Cousins, I.T. A never-ending story of per- and polyfluoroalkyl substances (PFASs)? Environ. Sci. Technol. 2017, 51, 2508–2518. [Google Scholar] [CrossRef] [PubMed]
- Nakayama, S.F.; Yoshikane, M.; Onoda, Y.; Nishihama, Y.; Iwai-Shimada, M.; Takagi, M.; Kobayashi, Y.; Isobe, T. Worldwide trends in tracing poly- and perfluoroalkyl substances (PFAS) in the environment. Trends Anal. Chem. 2019. [Google Scholar] [CrossRef]
- Shoemaker, J.A.; Grimmett, P.E.; Boutin, B.K. Method 537, Determination of Selected Perfluoro Alkyl Acids in Drinking Water by Solid Phase Extraction and Liquid Chromatography/Tandem Mass Spectrometry (LC/MS/MS); Version 1.1, EPA/600/R-08/092; USEPA Office of Research and Development: Cincinnati, OH, USA, 2009.
- Shoemaker, J.A.; Tettenhorst, D.R. Method 537.1, Determination of Selected Per- and Polyfluorinated Alkyl Subtances in Drinking Water by Solid Phase Extraction and Liquid Chromatography/Tandem Mass Spectrometry (LC/MS/MS); Version 1.0, EPA/600/R-18/352; USEPA Office of Research and Development: Cincinnati, OH, USA, 2018.
- USEPA. Drinking Water Contaminant Candidate List 4—Final. Fed. Regist. 2016, 81, 81099–81114. [Google Scholar]
- USEPA. Revisions to the Unregulated Contaminant Monitoring Rule (UCMR 3) for Public Water Systems. Fed. Regist. 2012, 77, 26072–26101. [Google Scholar]
- USEPA. The Third Unregulated Contaminant Monitoring Rule (UCMR 3): Data Summary; EPA 815-S-17-001; Office of Water: Washington, DC, USA, 2017.
- New Jersey Department of Environmental Protection. Interim Practical Quantitation Level (PQL) Determination to Support Interim Specific Ground Water Quality Standard Development for Perfluorooctanoic Acid (PFOA). Division of Science and Research; 6 March 2019. Available online: https://www.nj.gov/dep/dsr/supportdocs/PFOA_PQL.pdf (accessed on 19 June 2019).
- Rich, N. The Lawyer Who Became DuPont’s Worst Nightmare. The New York Times Magazine, 6 January 2016. Available online: https://www.nytimes.com/2016/01/10/magazine/the-lawyer-who-became-duponts-worst-nightmare.html(accessed on 19 June 2019).
- Mordock, J. Taking on duPont: Illnesses, Deaths Blamed on Pollution from W. VA Plant. Delaware Online. 1 April 2016. Available online: https://www.delawareonline.com/story/news/2016/04/01/dupont-illnesses-deaths-c8/81151346/ (accessed on 19 June 2019).
- Minnesota Pollution Control Agency. Perfluorochemicals (PFCs). Undated Webpage. Available online: https://www.pca.state.mn.us/waste/perfluorochemicals-pfcs (accessed on 19 June 2019).
- Hu, X.C.; Andrews, D.Q.; Lindstrom, A.B.; Bruton, T.A.; Schaider, L.A.; Granjean, P.; Lohmann, R.; Carignan, C.C.; Blum, A.; Balan, S.A.; et al. Detection of Poly- and Perfluoroalkyl Substances (PFASs) in U.S. Drinking Water Linked to Industrial Sites, Military Fire Training Areas, and Wastewater Treatment Plants. Environ. Sci. Technol. Lett. 2016, 3, 344–350. [Google Scholar] [CrossRef]
- Liu, C.; Gin, K.Y.H.; Chang, V.W.C.; Goh, B.P.L. Novel perspectives on the bioaccumulation of PFCs–The concentration dependency. Environ. Sci. Technol. 2011, 45, 9758–9764. [Google Scholar] [CrossRef]
- Zhu, H.; Kannan, K. Distribution and partitioning of perfluoroalkyl carboxylic acids in surface soil, plants, and earthworms at a contaminated site. Sci. Total Environ. 2019, 647–961. [Google Scholar] [CrossRef]
- Thompson, J.; Eaglesham, G.; Mueller, J. Concentrations of PFOS, PFOA and other perfluorinated alkyl acids in Australian drinking water. Chemosphere 2011, 83, 1320–1325. [Google Scholar] [CrossRef]
- Szabo, D.; Coggan, T.L.; Robson, T.C.; Currell, M.; Clarke, B.O. Investigating recycled water use as a diffuse source of per- and polyfluoroalkyl substances (PFASs) to groundwater in Melbourne, Australia. Sci. Total Envrion. 2018, 644, 1409–1417. [Google Scholar] [CrossRef]
- Thompson, J.; Roach, A.; Eaglesham, G.; Bartkow, M.E.; Edge, K.; Mueller, J.F. Perfluorinated alkyl acids in water, sediment and wildlife from Sydney Harbor and surroundings. Mar. Pollut. Bull. 2011, 62, 2869–2875. [Google Scholar] [CrossRef] [PubMed]
- Furdui, V.I.; Crozier, P.W.; Reiner, E.J.; Mabury, S.A. Trace level determination of perfluorinated compounds in water by direct injection. Chemosphere 2008, 73, 524–530. [Google Scholar] [CrossRef] [PubMed]
- Mak, Y.L.; Taniyasu, S.; Yeung, L.W.Y.; Lu, G.; Jin, L.; Yang, Y.; Lam, P.K.S.; Kannan, K.; Yamashita, N. Perfluorinated Compounds in Tap Water from China and Several Other Countries. Environ. Sci. Technol. 2009, 43, 4824–4829. [Google Scholar] [CrossRef] [PubMed]
- Kaboré, H.A.; Duy, S.V.; Munoz, G.; Méité, L.; Desrosiers, M.; Liu, J.; Sory, T.K.; Sauvé, S. Worldwide drinking water occurrence and levels of newly-identified perfluoroalkyl and polyfluoroalkyl substances. Sci. Total Environ. 2018, 616–617, 1089–1100. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Lu, Y.; Zhang, X.; Geng, J.; Wang, T.; Shi, Y.; Hu, W.; Li, J. A review of spatial and temporal assessment of PFOS and PFOA contamination in China. Chem. Ecol. 2009, 25, 163–177. [Google Scholar] [CrossRef]
- So, M.K.; Miyake, Y.; Yeung, W.Y.; Ho, Y.M.; Taniyasu, S.; Rostowski, P.; Yamashita, N.; Zhou, B.S.; Shi, X.J.; Wang, J.X.; et al. Perfluorinated compounds in the Pearl River and Yangtze River of China. Chemosphere 2007, 68, 2085–2095. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Zhou, Y.; Meng, J.; Wang, T. Seasonal and annual variations in removal efficiency of perfluoro alkyl substances by different wastewater treatment processes. Environ. Pollut. 2018, 242, 2059–2067. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Zhang, Y.; Taniyasu, S.; Yeung, L.W.Y.; Lam, P.K.S.; Wang, J.; Li, X.; Yamashita, N.; Dai, J. Detection and fate of perfluoroalkyl substances in municipal wastewater treatment plants in economically developed areas of China. Environ. Pollut. 2013, 176, 10–17. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Li, J.; Zhang, L.; Huang, Z.; Liu, Y.; Wu, N.; He, J.; Zhang, Z.; Zhang, Y.; Niu, Z. Perfluoroalkyl acids in drinking water of China 2017: Distribution characteristics, influencing factors and potential risks. Environ. Int. 2019, 123, 87–95. [Google Scholar] [CrossRef]
- Jin, Y.H.; Liu, W.; Sato, I.; Nakayama, S.F.; Sasaki, K.; Saito, N.; Tsuda, S. PFOS and PFOA in environmental and tap water in China. Chemosphere 2009, 77, 605–611. [Google Scholar] [CrossRef]
- Ahrens, L.; Felizeter, S.; Strum, R.; Xie, Z.; Ebinghaus, R. Polyfluorinated compounds in waste water treatment plant effluents and surface waters along the River Elbe, Germany. Mar. Pollut. Bull. 2009, 58, 1326–1333. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sunantha, G.; Vasudenvan, N. Assessment of perfluorooctanoic acid and perfluorooctane sulfonate in surface water. Mar. Pollut. Bull. 2016, 109, 612–618. [Google Scholar] [CrossRef] [PubMed]
- Takagi, F.; Adachi, F.; Miyano, K.; Tanaka, H.; Mimura, M.; Watanabe, I.; Tanabe, S.; Kannan, K. Perfluorooctanesulfonate and perfluorooctanoate in raw and treated tap water from Osaka, Japan. Chemosphere 2008, 72, 1409–1412. [Google Scholar] [CrossRef] [PubMed]
- Zafeiraki, E.; Costopoulou, D.; Vassiliadou, I.; Leondiadis, L.; Dassenakis, E.; Traag, W.; Hoogenboom, R.L.A.P.; van Leeuwn, S.P.J. Determination of perfluoroalkylated substances (PFASs) in drinking water from the Netherlands and Greece. Food Addit. Contam. A 2015, 32, 2048–2057. [Google Scholar] [CrossRef] [PubMed]
- Brandsma, S.H.; Koekkoek, J.C.; van Velzen, M.J.M.; de Boer, J. The PFOA substitute GenX detected in the environment near a fluoropolymer manufacturing plant in the Netherlands. Chemosphere 2019, 220, 493–500. [Google Scholar] [CrossRef] [PubMed]
- Lin, A.Y.-C.; Panchangam, S.C.; Lo, C.-C. The impact of semiconductor, electronics and optoelectronic industries on downstream perfluorinated chemical contamination in Taiwan rivers. Environ. Pollut. 2009, 157, 1365–1372. [Google Scholar] [CrossRef] [PubMed]
- Boone, J.S.; Vigo, C.; Boone, T.; Byrne, C.; Ferrario, J.; Benson, R.; Donohue, J.; Simmons, J.E.; Kolpin, D.W.; Furlong, E.T.; et al. Per- and polyfluoroalkyl substances in source and treated drinking water of the United State. Sci. Total Environ. 2019, 653, 359–369. [Google Scholar] [CrossRef]
- Quiñones, O.; Snyder, S.A. Occurrence of Perfluoroalkyl Carboxylates and Sulfonates in Drinking Water and Related Waters from the United States. Environ. Sci. Technol. 2009, 43, 9089–9095. [Google Scholar] [CrossRef]
- Hartz, M. PFAS Monitoring in a Post Health Advisory World—What Should We Be Doing? Presented at AWWA New York Section Conference. 2017. Available online: https://nysawwa.org/docs/presentations/2017/FINAL-PFAS%20Monitoring%20in%20Post%20health%20Advisory%20World-What%20Should%20We%20Be%20Doing-2017.pdf (accessed on 22 September 2019).
- USEPA. Provisional Health Advisory for Perfluorooctanoic Acid (PFOA) and Perfluorooctane Sulfonate (PFOS); Office of Water: Washington, DC, USA, 8 January 2009. Available online: https://www.epa.gov/sites/production/files/2015-09/documents/pfoa-pfos-provisional.pdf (accessed on 19 June 2019).
- USEPA. Framework for Human Health Risk Assessment to Inform Decision Making; EPA/100/R-14/001; Risk Assessment Forum: Washington, DC, USA, April 2014. Available online: https://www.epa.gov/sites/production/files/2014-12/documents/hhra-framework-final-2014.pdf (accessed on 22 September 2019).
- USEPA. Health Effects Support Document for Perfluorooctanoic Acid (PFOA); EPA 822-R-16-003; Office of Water: Washington, DC, USA, 2016.
- USEPA. Health Effects Support Document for Perfluorooctane Sulfonate (PFOS); EPA 822-R-16-002; Office of Water: Washington, DC, USA, 2016.
- ATSDR. Toxicological Profile for Perfluoroalkyls–Draft for Public Comment; US Dept of Health and Human Services: Atlanta, GA, USA, 2018. Available online: https://www.atsdr.cdc.gov/toxprofiles/tp.asp?id=1117&tid=237 (accessed on 22 September 2019).
- Dong, Z.; Bahar, M.M.; Jit, J.; Kennedy, B.; Priestly, B.; Ng, J.; Lamb, D.; Liu, Y.; Duan, L.; Naidu, R. Issues raised by the reference doses for perfluorooctane sulfonate and perfluorooactanoic acid. Environ. Int. 2017, 105, 86–94. [Google Scholar] [CrossRef]
- Post, G.B.; Gleason, J.A.; Cooper, K.R. Key scientific issues in developing drinking water guidelines for perfluoroalkyl acids: Contaminants of emerging concern. PLoS Biol. 2017, 15, e2002855. [Google Scholar] [CrossRef]
- Olesn, G.W.; Burris, J.M.; Ehresham, D.J.; Froehlich, J.W.; Seacat, A.M.; Butenhoff, J.L.; Zobel, L.R. Half-life of Serum Elimination of Perfluorooctanesulfonate, Perfluorohexanesulfonate, and Perfluorooctanoate in Retired Fluorochemical Production Workers. Envrion. Health Perspect. 2007, 115, 1298–1305. [Google Scholar] [CrossRef]
- Li, Y.; Fletcher, T.; Mucs, D.; Scott, K.; Lindh, C.H.; Tallving, P.; Jakobsson, K. Half-lives of PFOS, PFHxS and PFOA after end of exposure to contaminated drinking water. Occup. Environ. Med. 2018, 75, 46–51. [Google Scholar] [CrossRef]
- Loccisano, A.E.; Campbell, J.L.; Andersen, M.E.; Clewell, H.J. Evaluation and prediction of pharmacokinetics of PFOA and PFOS in the monkey and human using a PBPK model. Regul. Toxicol. Pharm. 2011, 59, 157–175. [Google Scholar] [CrossRef]
- Zhang, S.; Kang, Q.; Peng, H.; Ding, M.; Zhao, F.; Zhou, Y.; Dong, Z.; Zhang, H.; Yang, M.; Tao, S.; et al. Relationship between perfluoroactanoate and perfluorooctane sulfonate blood concentrations in the general population and routine drinking water exposure. Environ. Int. 2019, 126, 54–60. [Google Scholar] [CrossRef]
- Olsen, G.W.; Burris, J.M.; Berlew, M.M.; Mandel, J.H. Epidemiologic assessment of worker serum perfluoroactanesulfonate (PFOS) and perfluorooctanoate (PFOA) concentrations and medical surveillance examinations. J. Occup. Environ. Med. 2003, 45, 260–270. [Google Scholar] [CrossRef]
- Sakr, C.J.; Lenonard, R.C.; Kreckmann, K.H.; Slade, M.D.; Cullen, M.R. Longitudinal study of serum lipids and liver enzymes in workers with occupational exposure to ammonium perfluorooctanoate. J. Occup. Environ. Med. 2007, 49, 872–879. [Google Scholar] [CrossRef]
- Emmett, E.A.; Zhang, H.; Shofer, F.S.; Freeman, D.; Rodway, N.V.; Desai, C.; Shaw, L.M. Community exposure to perfluorooctanoate: Relationships between serum levels and certain health parameters. J. Occup. Environ. Med. 2006, 48, 771–779. [Google Scholar] [CrossRef]
- Steenland, K.; Jin, C.; MacNeil, J.; Lally, C.; Ducatman, A.; Vieira, V.; Fletcher, T. Predictors of PFOA levels in a community surrounding a chemical plant. Environ. Health Perspect. 2009, 117, 1083–1088. [Google Scholar] [CrossRef]
- Worley, R.R.; Moore, S.M.; Tierney, B.C.; Ye, X.; Calafate, A.M.; Campbell, S.; Woudneh, M.B.; Fisher, J. Per- and polyfluoroalkyl substances in human serum and urine samples from a residentially exposed community. Environ. Int. 2017, 106, 135–143. [Google Scholar] [CrossRef]
- Daly, E.R.; Chan, B.P.; Talbot, E.A.; Nassif, J.; Bean, C.; Cavallo, S.J.; Metcalf, E.; Simone, K.; Woolf, A.D. Per- and polyfluoroalkyl substances (PFAS) exposure assessment in a community exposed to contaminated drinking water, New Hampshire, 2015. Int. J. Hyg. Envir. Heal. 2018, 221, 569–577. [Google Scholar] [CrossRef]
- Olsen, G.W.; Mair, D.C.; Lange, C.C.; Harrington, L.M.; Church, T.R.; Goldberg, C.L.; Herron, R.M.; Hanna, H.; Nobiletti, J.B.; Rios, J.A.; et al. Per- and polyfluoroalkyl substances (PFAS) in American Red Cross adult blood donors, 2000–2015. Environ. Res. 2017, 157, 87–95. [Google Scholar] [CrossRef]
- USEPA. A Review of the Reference Dose and Reference Concentration Processes; EPA/630/P-02/0002F; Risk Assessment Forum: Washington, DC, USA, 2002. Available online: https://www.epa.gov/sites/production/files/2014-12/documents/rfd-final.pdf (accessed on 22 September 2019).
- Lau, C.; Thibodeaux, J.R.; Hanson, R.G.; Narotsky, M.G.; Rogers, J.M.; Lindstrom, A.B.; Strynar, M.J. Effects of perfluorooctanoic acid exposure during pregnancy in the mouse. Toxicol. Sci. 2006, 90, 510–518. [Google Scholar] [CrossRef]
- Luebker, D.J.; Case, R.G.; York, R.G.; Moore, J.A.; Hansen, K.J.; Butenoff, J.L. Two-generation reproduction and cross-foster studies of perfluorooctanesulfonate (PFOS) in rats. Toxicology 2005, 215, 126–148. [Google Scholar] [CrossRef]
- Nicole, W. PFOA and Cancer in a Highly Exposed Community. Environ. Health Perspect. 2013, 121, A340. [Google Scholar] [CrossRef]
- USEPA. Guidelines for Carcinogen Risk Assessment; EPA/630/P-03/001F; Risk Assessment Forum: Washington, DC, USA, March 2005. Available online: https://www.epa.gov/sites/production/files/2013-09/documents/cancer_guidelines_final_3-25-05.pdf (accessed on 22 September 2019).
- Butenhoff, J.L.; Kennedy, G.L.; Chang, S.C.; Olsen, G.W. Chronic dietary toxicity and carcinogenicity study with ammonium perfluorooctanotae in Sprague-Dawley rats. Toxicology 2012, 298, 1–13. [Google Scholar] [CrossRef]
- Arrieta-Cortes, R.; Farias, P.; Hoyo-Vadillo, C.; Kleiche-Dray, M. Carcinogenic risk of emerging persistent organic pollutant perfluorooctane sulfonate (PFOS): A proposal of classification. Regul. Toxicol. Pharm. 2017, 83, 66–80. [Google Scholar] [CrossRef]
- Begley, T.H.; White, K.; Honigfort, P.; Twaroski, M.L.; Neches, R.; Walker, R.A. Perfluorochemicals: Potential sources of and migration from food packaging. Food Addit. Contam. 2005, 22, 1023–1031. [Google Scholar] [CrossRef]
- USFDA. Indirect Food Additives: Paper and Paperboard Components. Fed. Regist. 2016, 81, 5–8. [Google Scholar]
- Fraser, A.J.; Webster, T.F.; Watkins, D.J.; Strynar, M.J.; Kato, K.; Calafat, A.M.; Vieira, V.M.; McClean, M.D. Polyfluorinated compounds in dust from homes, offices, and vehicles as predictors of concentrations in office workers’ serum. Environ. Int. 2013, 60, 128–136. [Google Scholar] [CrossRef]
- Trudel, D.; Horowitz, L.; Wormuth, M.; Scheringer, M.; Cousins, I.T.; Hungerbühler, K. Estimating Consumer Exposure to PFOS and PFOA. Risk Anal. 2008, 28, 251–269. [Google Scholar] [CrossRef]
- Kim, D.-H.; Lee, J.-H.; Oh, J.-E. Assessment of individual-based perfluoroalkyl substances exposure by multiple human exposure sources. J. Hazard. Mater. 2019, 365, 26–33. [Google Scholar] [CrossRef]
- Wu, N.; Cai, D.; Guo, M.; Li, M.; Li, X. Per- and polyfluorinated compounds in sales women’s urine linked to indoor dust in clothing shops. Sci. Total Environ. 2019, 667, 594–600. [Google Scholar] [CrossRef]
- Franko, J.; Meade, B.J.; Frasch, H.F.; Barbero, A.M.; Anderson, S.E. Dermal Penetration Potential of Perfluorooctanoic Acid (PFOA) in Human and Mouse Skin. J. Toxicol. Environ. Health A 2012, 75. [Google Scholar] [CrossRef]
- Gebbink, V.G.; Berger, U.; Cousins, I.T. Estimating human exposure to PFOS isomers and PFCA homologues: The relative importance of direct and indirect (precursor) exposure. Environ. Int. 2015, 74, 160–169. [Google Scholar] [CrossRef] [Green Version]
- National Toxicology Program. NTP Monograph on Immunotoxicity Associated with Exposure to Perfluorooctanoic Acid (PFOA) or Perfluorooctane Sulfonate (PFOS); Office of Health Assessment and Translation: Research Triangle Park/Durham, NC, USA, 2016.
- Peden-Adams, M.M.; Keller, J.M.; Eudaly, J.G.; Berger, J.; Gilkeson, G.S.; Keil, D.E. Suppression of humnoral immunity is mice following exposure to perfluorooctane sulfonate. Toxicol. Sci. 2008, 104, 144–154. [Google Scholar] [CrossRef]
- Lilienthal, H.; Dieter, H.H.; Holzer, J.; Wilhelm, M. Recent experimental results of effects of perfluoroalkyl substances in laboratory animals–Relation to current regulations and guidance values. Int. J. Hyg. Environ. Health 2017, 220, 766–775. [Google Scholar] [CrossRef]
- Pachkowski, B.; Post, G.B.; Stern, A.H. The derivation of a Reference Dose (RfD) for Perfluorooctane sulfonate (PFOS) based on immune suppression. Environ. Res. 2019, 171, 452–469. [Google Scholar] [CrossRef]
- Dong, G.H.; Zhang, Y.H.; Zheng, L.; Liu, W.; Jin, Y.H.; He, Q.C. Chronic effects of perfluorooctanesulfonate exposure on immunotoxicity in adult male C57B1/6 mice. Arch. Toxicol. 2009, 83, 805–815. [Google Scholar] [CrossRef]
- Chang, E.T.; Adami, H.-O.; Boffetta, P.; Wedner, H.J.; Mandel, J.S. A critical review of perfluorooactanoate and perfluorooctanesulfonate exposure and immunological health conditions in humans. Crit. Rev. Toxicol. 2016, 46, 279–331. [Google Scholar] [CrossRef]
- 1986 SDWA Amendments Sec. 1412(b)(4)(D). Available online: https://www.congress.gov/bill/99th-congress/senate-bill/124 (accessed on 22 September 2019).
- Rayne, S.; Forest, K. Perfluoroalkyl sulfonic and carboxylic acids: A critical review of physicochemical properties, levels and patterns in waters and wastewaters, and treatment methods. J. Environ. Sci. Health A 2009, 44, 1145–1199. [Google Scholar] [CrossRef]
- Vecitis, C.D.; Park, H.; Cheng, J.; Mader, B.T.; Hoffman, M.R. Treatment technologies for aqueous perfluoroocatanesulfonate (PFOS) and perfluorooctanoate (PFOA). Front. Environ. Sci. Eng. China 2009, 3, 129–151. [Google Scholar] [CrossRef]
- Eschauzier, C.; Beerendonk, E.; Scholte-Veenendall, P.; Voogt, P.D. Impact of Treatment Processes on the Removal of Perfluoroalkyl Acids from Drinking Water Production Chain. Environ. Sci. Technol. 2012, 46, 1708–1715. [Google Scholar] [CrossRef]
- Appleman, T.D.; Higgins, C.P.; Quinones, O.; Vanderford, B.J.; Kolstad, C.; Zeigler-Holady, J.C.; Dickenson, E.R.V. Treatment of poly- and perfluoroalkyl substances in U.S. full-scale water treatment systems. Water Res. 2014, 51, 246–255. [Google Scholar] [CrossRef]
- Rahman, M.F.; Peldszus, S.; Anderson, W.B. Behaviours and fate of perfluoroalkyl and polyfluoroalkyl substances (PFASs) in drinking water treatment: A review. Water Res. 2014, 50, 318–340. [Google Scholar] [CrossRef]
- Kucharzyk, K.H.; Darlington, R.; Benotti, M.; Deeb, R.; Hawley, E. Novel treatment technologies for PFAS compounds: A critical review. J. Environ. Manag. 2017, 204, 757–764. [Google Scholar] [CrossRef]
- Takagi, S.; Adachi, F.; Miyano, K.; Koizumi, Y.; Tanaka, H.; Watanabe, I.; Tanabe, S.; Kannan, K. Fate of perfluoroocatanesulfonate and perfluorooctanoate in drinking water treatment processes. Water Res. 2011, 45, 3925–3932. [Google Scholar] [CrossRef]
- Thompson, J.; Eaglesham, G.; Reungoat, J.; Poussade, Y.; Bartkow, M.; Lawrence, M.; Mueller, J.F. Removal of PFOS, PFOA and other perfluoroalkyl acids at water reclamation plants in South East Queensland Australia. Chemosphere 2011, 82, 9–17. [Google Scholar] [CrossRef]
- Xiao, F.; Simcik, J.F.; Gulliver, J.S. Mechanisms for removal of perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA) from drinking water by conventional and enhanced coagulation. Water Res. 2013, 47, 49–56. [Google Scholar] [CrossRef]
- Bao, Y.; Niu, J.; Xu, Z.; Gao, D.; Shi, J.; Sun, X.; Huang, Q. Removal of perfluorooctanoate sulfonate (PFOS) and perfluorooctanoate (PFOA) form water by coagulation: Mechanisms and influencing factors. J. Colloid Interface Sci. 2014, 434, 59–64. [Google Scholar] [CrossRef]
- Pramanik, B.K.; Pramanki, S.K.; Suja, F. A comparative study of coagulation, granular- and powdered activated carbon for the removal of perfluorooctane sulfonate and perfluorooctanoate in drinking water treatment. Environ. Technol. 2015, 36, 2610–2617. [Google Scholar] [CrossRef]
- Deng, S.; Zhou, Q.; Yu, G.; Huan, J.; Fan, Q. Removal of perfluorooctanoate from surface water by polyaluminum chloride coagulation. Water Res. 2011, 45, 1774–1780. [Google Scholar] [CrossRef]
- Kunacheva, C.; Fuji, S.; Tanaka, S.; Boontanon, S.K.; Poothong, S.; Wongwatthana, T.; Shivakoti, B.R. Perfluorinated compounds contamination in tap water and bottled water in Bangkok, Thailand. J. Water Supply Res. Technol. 2010, 59, 345–354. [Google Scholar] [CrossRef]
- Espana, V.A.A.; Mallavarapu, M.; Naidu, R. Treatment Technologies for aqueous perfluoroocatanesulfonate (PFOS) and perfluorooctanoate (PFOA): A critical review with an emphasis on field testing. Environ. Technol. Innov. 2015, 4, 168–181. [Google Scholar] [CrossRef]
- Lee, Y.-C.; Lo, S.-L.; Lin, Y.-L. Persulfate oxidation of perfluorooctanoic acid under the temperatures of 20–40 °C. Chem. Eng. J. 2012, 198–199, 27–32. [Google Scholar] [CrossRef]
- McNamara, J.D.; Franco, R.; Mimna, R.; Zappa, L. Comparison of Activated Carbons for Removal of Perfluorinated Compounds from Drinking Water. J. AWWA 2018, 110. [Google Scholar] [CrossRef]
- McCleaf, P.; Englund, S.; Ostlund, A.; Lindegren, K.; Wiberg, K. Removal efficiency of multiple poly- and perfluoroalkyl substances (PFASs) in drinking water using granular activated carbon (GAC) and anion exchange )AE) column tests. Water Res. 2017, 120, 77–87. [Google Scholar] [CrossRef]
- Kothawala, K.H.; Kohler, S.J.; Ostund, A.; Wiberg, K.; Ahrens, L. Influence of dissolved organic matter concentration and composition of the removal efficiency of perfluoroalkyl substances (PFASs) during drinking water treatment. Water Res. 2017, 121, 320–328. [Google Scholar] [CrossRef]
- Hoslett, J.; Massara, T.M.; Malamis, S.; Ahmad, D.; van den Boogaert, I.; Katsou, E.; Ahmad, B.; Ghazal, H.; Simons, S.; Wrobel, L.; et al. Surface water filtration using granular media and membranes: A review. Sci. Total Environ. 2008, 639, 1268–1282. [Google Scholar] [CrossRef]
- Chen, X.; Xia, X.; Wang, X.; Qiao, J.; Chen, H. A comparative study on sorption of perfluoroactane sulfonate. Chemosphere 2011, 83, 1313–1319. [Google Scholar] [CrossRef]
- Qu, Y.; Zhang, C.; Li, F.; Bo, X.; Liu, G.; Zhou, Q. Equilibrium and kinetics study on the adsorption of perfluorooctanoic acid from aqueous solution onto powdered activated carbon. J. Hazard. Mater. 2009, 169, 146–152. [Google Scholar] [CrossRef]
- Yu, Q.; Zhang, R.; Deng, S.; Huang, J.; Yu, G. Sorption of perfluorooctane sulfonate and perfluorooctanoate on activated carbons and resins: Kinetic and isotherm study. Water Res. 2009, 43, 1150–1158. [Google Scholar] [CrossRef] [PubMed]
- Hansen, M.C.; Børresen, M.H.; Schlabach, M.; Cornelissen, G. Sorption of perfluorinated compounds from contaminated water to activated carbon. J. Soils Sediments 2010, 10, 179. [Google Scholar] [CrossRef]
- Meng, P.; Fang, X.; Maimaiti, A.; Yu, G.; Deng, S. Efficient removal of perfluroinated compounds from water using a regenerable magnetic activated carbon. Chemosphere 2019, 224, 187–194. [Google Scholar] [CrossRef] [PubMed]
- Public Law 104–182, The Safe Drinking Water Act Amendments of 1996, Section 1412(b)(7). Available online: https://www.congress.gov/104/plaws/publ182/PLAW-104publ182.pdf (accessed on 22 September 2019).
- Public Law 104–182, The Safe Drinking Water Act Amendments of 1996, Section 1412(b)(4)(B). Available online: https://www.congress.gov/104/plaws/publ182/PLAW-104publ182.pdf (accessed on 22 September 2019).
- Public Law 104–182, The Safe Drinking Water Act Amendments of 1996, Section 1412(b)(4)(D). Available online: https://www.congress.gov/104/plaws/publ182/PLAW-104publ182.pdf (accessed on 22 September 2019).
- U.S. Court of Appeals. Chlorine Chemistry Council and Chemical Manufacturers Association v. EPA.; U.S. Court of Appeals, Case 99–1627; District of Columbia Circui: Washington, DC, USA, 2000.
- U.S. Court of Appeals. International Fabricare Institute for Itself and on Behalf of its Members v. USEPA.; U.S. Court of Appeals, Case 91–1838; District of Columbia Circuit: Washington, DC, USA, 1994.
- Public Law 104–182, The Safe Drinking Water Act Amendments of 1996, Section 1412(b)(3)(C). Available online: https://www.congress.gov/104/plaws/publ182/PLAW-104publ182.pdf (accessed on 22 September 2019).
- USEPA. Standardized Monitoring Framework, Office of Water; EPA 570/F-91-045; USEPA: Washington, DC, USA, 1991.
- Public Law 104–182, The Safe Drinking Water Act Amendments of 1996, Section 1412(b)(1)(B)(ii). Available online: https://www.congress.gov/104/plaws/publ182/PLAW-104publ182.pdf (accessed on 22 September 2019).
- Orange County Water District. PFOA and PFOS Occurrence in the Santa Anna River Watershed; OCWD Presentation to SAWPA EC Task Force; Orange County Water District: Fountain Valley, CA, USA, 2019.
- ITRC. PFAS Fact Sheet Table 4–1. Standards and Guidance Values for PFAS in Groundwater, Drinking Water, and Surface Water/Effluent (Wastewater). June 2019. Available online: https://pfas-1.itrcweb.org/fact-sheets/ (accessed on 22 September 2019).
- California State Water Resources Control Board. Perfluorooctanoic Acid (PFOA) and Perfluorooctanesulfonic Acid (PFOS) Webpage, Division of Drinking Water. 2019. Available online: https://www.waterboards.ca.gov/drinking_water/certlic/drinkingwater/PFOA_PFOS.html (accessed on 22 September 2019).
- Minnesota Department of Health. Human Health-Based Water Guidance Table. 2019. Available online: https://www.health.state.mn.us/communities/environment/risk/guidance/gw/table.html (accessed on 13 August 2109).
- New Jersey Department of Environmental Protection. Site Remediation Program Website, Contaminants of Emerging Concern. 13 March 2019. Available online: https://www.nj.gov/dep/srp/emerging-contaminants/ (accessed on 13 August 2109).
- Vermont Department of Health. Memo from Schwer, C. to Chapmann, M. and Englander, D. Perfluorooctanoic acid (PFOA) and Perfluorooctanesulfonic acid (PFOS); Vermont Drinking Water Health Advisory: Burlington, VT, USA, 2016.
- USEPA. Draft Interim Recommendations to Address Groundwater Contaminated with Perfluorooctanoic Acid and Perfluoroctane Sulfonate. April 2019. Available online: https://www.epa.gov/sites/production/files/2019-04/documents/draft_interim_recommendations_for_addressing_groundwater_contaminated_with_pfoa_and_pfos_public_comment_draft_4-24-19.508post.pdf (accessed on 22 September 2019).
- ATSDR. Toxic Substances Portal, Minimal Risk Levels (MRLs)—For Professionals. 21 June 2018. Available online: https://www.atsdr.cdc.gov/mrls/index.asp (accessed on 31 July 2019).
- Health Canada. Guidelines for Canadian Drinking Water Quality: Guideline Technical Document. Perfluoroactane Acid (PFOA). December 2018. Available online: https://www.canada.ca/en/health-canada/services/publications/healthy-living/guidelines-canadian-drinking-water-quality-technical-document-perfluorooctanoic-acid/document.html (accessed on 31 July 2019).
- Health Canada. Guidelines for Canadian Drinking Water Quality: Guideline Technical Document. Perfluorooctane Sulfonate (PFOS). December 2018. Available online: https://www.canada.ca/en/health-canada/services/publications/healthy-living/guidelines-canadian-drinking-water-quality-guideline-technical-document-perfluorooctane-sulfonate/document.html#1.0 (accessed on 31 July 2019).
- Larsen, P.B.; Giovalle, E. Danish Ministry of the Environment. Perfluoroalkylated Substances: PFOA, PFOS and PFOSA: Evaluation of Health Hazards and Proposal of a Health Based Quality Criterion for Drinking Water, Soil and Ground Water; Environmental project No. 1665; The Danish Environmental Protection Agency: Copenhagen, Denmark, 2015; Available online: http://www2.mst.dk/Udgiv/publications/2015/04/978-87-93283-01-5.pdf (accessed on 23 May 2019).
- German Ministry of Health. Assessment of PFOA in the Drinking Water of the German Hochsauerlandkreis. Provisional Evaluation of PFT in Drinking Water with the Guide Substances Perfluorooctanoic acid (PFOA) and Perfluorooctane Sulfonate (PFOS) as Examples. 2006. Available online: http://www.umweltbundesamt.de/sites/default/files/medien/pdfs/pft-in-drinking-water.pdf (accessed on 23 May 2019).
- USEPA. Contaminant Candidate List Regulatory Determination Support Document for Aldrin and Dieldrin; EPA-815-R-03-010; Office of Water: Washington, DC, USA, 2003.
- USEPA. Regulatory Determinations Support Document for Selected Contaminants from the Second Drinking Water Contaminant Candidate List (CCL2); EPA 815-R-08-012; Office of Water: Washington, DC, USA, 2008.
- USEPA. Announcement of Final Regulatory Determinations for Contaminants on the Third Drinking Water Contaminant Candidate List. Fed. Regist. 2016, 81, 13–19. [Google Scholar]
- Mordock, J. DuPont, Chemours to Pay $670 Million over PFOA Suits. Delaware News Journal, Delaware Online. 17 February 2017. Available online: http://delonline.us/2kCechH (accessed on 13 August 2019).
- Minnesota Pollution Control Agency. 3M and PFCs: 2018 Settlement Website, Undated. Available online: https://www.pca.state.mn.us/waste/3m-and-pfcs-2018-settlement (accessed on 13 August 2019).
- Reisch, M.S. 3M settles PFAS suit in Alabama. Chem. Eng. News 2019, 97, 12. [Google Scholar]
- USEPA. System Toxicological Approaches to Define and Predict the Toxicity of Per- and Poly-Fluoroalkyl Substances. EPA Grant No. R839481. Available online: https://cfpub.epa.gov/ncer_abstracts/index.cfm/fuseaction/display.abstractDetail/abstract/10950/report/0 (accessed on 22 September 2019).
- USEPA. PFAS United: Poly- and Perfluoroalkyl Substances- US National Investigation of Transport and Exposure from Drinking Water and Diet. EPA Grant No. R839482; 1 May 2019. Available online: https://cfpub.epa.gov/ncer_abstracts/index.cfm/fuseaction/display.abstractDetail/abstract/10951/report/0 (accessed on 22 September 2019).
Analyte (Chain Length) | Acronym | CASRN | DL ng/L | LCMRL ng/L |
---|---|---|---|---|
Hexafluoropropylene oxide dimer acid | HFPO-DA | 13252-13-6 | 1.9 | 4.3 |
N-ethyl perfluoroactanesulfonamido-acetic acid | NEtFOSAA | 2991-50-6 | 2.8 | 4.8 |
N-methyl perfluorooctanesulfonamidoacetic acid | NMeFOSAA | 2355-31-9 | 2.4 | 4.3 |
Perfluorobutanesulfonic acid (C4) | PFBS | 375-73-5 | 1.8 | 6.3 |
Perfluorodecanoic acid (C10) | PFDA | 335-76-2 | 1.6 | 3.3 |
Perfluorododecanoic acid (C12) | PFDoA | 307-55-1 | 1.2 | 1.3 |
Perfluoroheptanoic acid (C7) | PFHpA | 375-85-9 | 0.71 | 0.63 |
Perfluorohexanesulfonic acid (C6) | PFHxS | 355-46-4 | 1.4 | 2.4 |
Perfluorohexanoic acid (C6) | PFHxA | 307-24-4 | 1.0 | 1.7 |
Perfluorononanoic acid (C9) | PFNA | 375-95-1 | 0.70 | 0.83 |
Perfluorooctanesulfonic acid (C8) | PFOS | 1763-23-1 | 1.1 | 2.7 |
Perfluorooctanoic acid (C8) | PFOA | 335-67-1 | 0.53 | 0.82 |
Perfluorotetradecanoic acid (C14) | PFTA | 376-06-7 | 1.1 | 1.2 |
Perfluorotridecanoic acid (C13) | PFTrDA | 72629-94-8 | 0.72 | 0.53 |
Perfluoroundedcanoic acid (C11) | PFUnA | 2058-94-8 | 1.6 | 5.2 |
11-chloroeicosafluoro-3-oxaundecane-1-sulfonic acid | 11Cl-PF3OUdS | 763051-92-9 | 1.5 | 1.5 |
9-chlorohexadecafluoro-3-oxanone-1-sulfonic acid | 9Cl-PF3ONS | 756426-58-1 | 1.4 | 1.8 |
4,8-dioxa-3H-perfluorononanoic acid | ADONA | 919005-14-4 | 0.88 | 0.55 |
Country | Location | PFOA ng/L | PFOS ng/L | ΣPFAS ng/L | References |
---|---|---|---|---|---|
Australia | Drinking water | nd–9.7 | nd–16 | nd–28 | [42] |
Recycled water | <0.09–6.9 | <0.03–34 | <0.03–74 | [43] | |
Sydney Harbor | 4.2–6.4 | 7.5–21 | [44] | ||
Canada | Great Lakes | 1.6–6.7 | 1.2–37.6 | [45] | |
Lake Ontario | 4.1–38.1 | 2.6–22.9 | [45] | ||
tributaries | |||||
WWTP effluent | 6.5–54.7 | 8.6–208.5 | 10 max | [45] | |
River waters | 0.8 max | 2.5 max | 44 max | [24] | |
Drinking water | 0.20–2.1 | 3.3 | 10 | [46] | |
Drinking water | nd–4.86 | nd–4.99 | [47] | ||
Bottled water | nd–<0.2 | nd–<0.1 | [47] | ||
China | Huangpu River | 1590 | 20.5 | [48] | |
Pearl River | 0.85–13 | 0.90–99 | [49] | ||
tributaries | |||||
Yangtze River | 2.1–260 | <0.01–14 | [49] | ||
WWTP influent | <0.13–20 | <0.13–10 | 11.1–80.6 | [50] | |
WWTP influent | 2–91 | 1–32 | [51] | ||
WWTP effluent | <0.13–20 | <0.13–16 | 4.8–71.5 | [50] | |
WWTP effluent | 3–107 | 1–67 | [51] | ||
Drinking water | nd–26.3 | 0.01–2.80 | 4.49–174.93 | [52] | |
Drinking water | 10 mean | 3.9 mean | 180 max | [46] | |
Drinking water | <0.1–45.9 | <0.1–14.8 | [53] | ||
Bottled water | nd–0.95 | nd | [47] | ||
Germany | River Elbe | 7.2–9.6 | 0.5–2.9 | [54] | |
WWTP effluent | 7.6–12.3 | <0.06–82.2 | [54] | ||
Drinking water | 0.50 | 0.69 | [46] | ||
India | Surface waters | 4–93 | 3–29 | [55] | |
Drinking water | <0.033–2.0 | <0.04–8.4 | [46] | ||
Japan | River waters | 0.7–43,239 | nd–200 | [24] | |
SW sources | 5.2–92 | 0.26–22 | [56] | ||
Drinking water | 2.3–84 | 0.16–22 | [56] | ||
Drinking water | 0.18–18 | 0.066–4.9 | [46] | ||
The Netherlands | Drinking water | <0.6–4.9 | <0.6–3.0 | <0.6–54 | [57] |
GW near a fluoro-polymer plant | 3900–25,000 | [58] | |||
Taiwan | Semiconductor | 118.3 | 128,670 | [59] | |
WWTP effluent | |||||
River waters | 10.9–310 | 82–5400 | [59] | ||
Drinking water | 3.7 | 5.4 | [46] | ||
Thailand | River waters | <0.3–450 | 21 max | [24] | |
Drinking water | 1.2–4.6 | 0.13–1.9 | [46] | ||
United States | SW sources | 112 max | 48.3 max | 0.12–1101 | [60] |
Treated DW | 104 max | 36.9 max | 0.15–1094 | [60] | |
Drinking water | 1.2 | 1.4 | [46] | ||
Drinking water | <5–30 | <1–57 | [61] |
Measure | PFOA | PFOS | PFNA | PFHxS | PFHpA | PFBS |
---|---|---|---|---|---|---|
MRL ng/L | 20 | 40 | 20 | 30 | 10 | 90 |
HRL ng/L | 70 | 70 | na | na | na | na |
Total number of test results | 36,972 | 36,972 | 36,972 | 36,971 | 36,972 | 36,972 |
Number of results ≥ MRL | 379 | 292 | 19 | 207 | 236 | 19 |
Number of results > HRL | 32 | 124 | na | na | na | na |
% of all results > HRL | 0.09% | 0.34% | na | na | na | na |
Number of PWSs with results | 4920 | 4920 | 4920 | 4920 | 4920 | 4920 |
Number of PWSs > HRL | 13 | 46 | na | na | na | na |
% of PWSs > HRL | 0.3% | 0.9% | na | na | na | na |
© 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pontius, F. Regulation of Perfluorooctanoic Acid (PFOA) and Perfluorooctane Sulfonic Acid (PFOS) in Drinking Water: A Comprehensive Review. Water 2019, 11, 2003. https://doi.org/10.3390/w11102003
Pontius F. Regulation of Perfluorooctanoic Acid (PFOA) and Perfluorooctane Sulfonic Acid (PFOS) in Drinking Water: A Comprehensive Review. Water. 2019; 11(10):2003. https://doi.org/10.3390/w11102003
Chicago/Turabian StylePontius, Frederick. 2019. "Regulation of Perfluorooctanoic Acid (PFOA) and Perfluorooctane Sulfonic Acid (PFOS) in Drinking Water: A Comprehensive Review" Water 11, no. 10: 2003. https://doi.org/10.3390/w11102003