Impact of Climate Change and Human Activities on Streamflow Variations Based on the Budyko Framework
Abstract
1. Introduction
2. Study Area
3. Methodology
3.1. Mann–Kendall Trend Test
3.2. Mann–Whitney–Pettit Test
3.3. Elasticity Method
4. Results and Discussion
4.1. Trend Analysis
4.2. Impacts of Climate Change and Non-Climate Factors on Streamflow
4.3. Sensitivity Analysis of Streamflow Variation
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Mach, K.; Mastrandrea, M. Climate Change 2014: Impacts, Adaptation, and Vulnerability; Field, C.B., Barros, V.R., Eds.; Cambridge University Press: Cambridge, UK, 2014; Volume 1. [Google Scholar]
- Parry, M.; Lowe, J.; Hanson, C. Overshoot, adapt and recover. Nature 2009, 458458, 1102. [Google Scholar] [CrossRef]
- Huntington, T.G. Evidence for intensification of the global water cycle: Review and synthesis. J. Hydrol. 2006, 319319, 83–95. [Google Scholar] [CrossRef]
- Zhao, Y.; Yang, N.; Wei, Y.; Hu, B.; Cao, Q.; Tong, K.; Liang, Y. Eight Hundred Years of Drought and Flood Disasters and Precipitation Sequence Reconstruction in Wuzhou City, Southwest China. Water 2019, 1111, 219. [Google Scholar] [CrossRef]
- Huntington, T.G.; Billmire, M. Trends in precipitation, runoff, and evapotranspiration for rivers draining to the Gulf of Maine in the United States. J. Hydrometeotol. 2014, 1515, 726–743. [Google Scholar] [CrossRef]
- Xu, X.; Yang, D.; Yang, H.; Lei, H. Attribution analysis based on the Budyko hypothesis for detecting the dominant cause of runoff decline in Haihe basin. J. Hydrol. 2014, 510, 530–540. [Google Scholar] [CrossRef]
- Wang, C.; Wang, S.; Fu, B.; Zhang, L. Advances in hydrological modelling with the Budyko framework: A review. Prog. Phys. Geogr. 2016, 40, 409–430. [Google Scholar] [CrossRef]
- Li, Y.; Liu, C.; Zhang, D.; Liang, K.; Li, X.; Dong, G. Reduced runoff due to anthropogenic intervention in the Loess Plateau, China. Water 2016, 8, 458. [Google Scholar] [CrossRef]
- Chang, J.; Wei, J.; Wang, Y.; Yuan, M.; Guo, J. Precipitation and runoff variations in the Yellow River Basin of China. J. Hydroinform. 2017, 19, 138–155. [Google Scholar] [CrossRef]
- Zhao, Y.; Zou, X.; Liu, Q.; Yao, Y.; Li, Y.; Wu, X.; Wang, T. Assessing natural and anthropogenic influences on water discharge and sediment load in the Yangtze River, China. Sci. Total Environ. 2017, 607, 920–932. [Google Scholar] [CrossRef]
- Brown, A.E.; Zhang, L.; McMahon, T.A.; Western, A.W.; Vertessy, R.A. A review of paired catchment studies for determining changes in water yield resulting from alterations in vegetation. J. Hydrol. 2005, 310, 28–61. [Google Scholar] [CrossRef]
- Sharma, P.J.; Patel, P.L.; Jothiprakash, V. Impact of rainfall variability and anthropogenic activities on streamflow changes and water stress conditions across Tapi Basin in India. Sci. Total Environ. 2019, 687, 885–897. [Google Scholar] [CrossRef] [PubMed]
- Guo, L.P.; Mu, X.M.; Hu, J.M.; Gao, P.; Zhang, Y.F.; Liao, K.T.; Yu, Q. Assessing Impacts of Climate Change and Human Activities on Streamflow and Sediment Discharge in the Ganjiang River Basin (1964–2013). Water 2019, 11, 1679. [Google Scholar] [CrossRef]
- Roderick, M.L.; Farquhar, G.D. A simple framework for relating variations in runoff to variations in climatic conditions and catchment properties. Water Resour. Res. 2011, 47, 1–11. [Google Scholar] [CrossRef]
- Yang, H.; Yang, D. Derivation of climate elasticity of runoff to assess the effects of climate change on annual runoff. Water Resour. Res. 2011, 47, W07526. [Google Scholar] [CrossRef]
- Liang, W.; Bai, D.; Wang, F.; Fu, B.; Yan, J.; Wang, S.; Feng, M. Quantifying the impacts of climate change and ecological restoration on streamflow changes based on a Budyko hydrological model in China’s Loess Plateau. Water Resour. Res. 2015, 51, 6500–6519. [Google Scholar] [CrossRef]
- Tomer, M.D.; Schilling, K.E. A simple approach to distinguish land-use and climate-change effects on watershed hydrology. J. Hydrol. 2009, 376, 24–33. [Google Scholar] [CrossRef]
- Wang, D.; Hejazi, M. Quantifying the relative contribution of the climate and direct human impacts on mean annual streamflow in the contiguous United States. Water Resour. Res. 2011, 47, W00J12. [Google Scholar] [CrossRef]
- Li, Z.; Ning, T.; Li, J.; Yang, D. Spatiotemporal variation in the attribution of streamflow changes in a catchment on China’s Loess Plateau. Catena 2017, 158, 1–8. [Google Scholar] [CrossRef]
- Gao, G.; Fu, B.; Wang, S.; Liang, W.; Jiang, X. Determining the hydrological responses to climate variability and land use/cover change in the Loess Plateau with the Budyko framework. Sci. Total Environ. 2016, 557, 331–342. [Google Scholar] [CrossRef] [PubMed]
- Budyko, M.I. Evaporation under Natural Conditions. Gidrometeorizdat, Leningrad 1948; English Translation by Isreal Program for Scientific Translations; IPST: Jerusalem, Israel, 1963. [Google Scholar]
- Budyko, M.I. Climate and Life; Academic Press: New York, NY, USA, 1974. [Google Scholar]
- Siriwardena, L.; Finlayson, B.L.; McMahon, T.A. The impact of land use change on catchment hydrology in large catchments: The Comet River, Central Queensland, Australia. J. Hydrol. 2006, 326, 199–214. [Google Scholar] [CrossRef]
- Zhang, L.; Karthikeyan, R.; Bai, Z.; Srinivasan, R. Analysis of streamflow responses to climate variability and land use change in the Loess Plateau region of China. Catena 2017, 154, 1–11. [Google Scholar] [CrossRef]
- Gao, P.; Mu, X.M.; Wang, F.; Li, R. Changes in streamflow and sediment discharge and the response to human activities in the middle reaches of the Yellow River. Hydrol. Earth Syst. Sci. 2011, 15, 1. [Google Scholar] [CrossRef]
- Wu, J.; Miao, C.; Zhang, X.; Yang, T.; Duan, Q. Detecting the quantitative hydrological response to changes in climate and human activities. Sci. Total Environ. 2017, 586, 328–337. [Google Scholar] [CrossRef] [PubMed]
- Schaake, J.C. From Climate to Flow, in Climate Change and U.S. Water Resources; Waggoner, P.E., Ed.; John Wiley: Hoboken, NJ, USA, 1990; Chapter 8; pp. 177–206. [Google Scholar]
- Sankarasubramanian, A.; Vogel, R.M.; Limbrunner, J.F. Climate elasticity of streamflow in the United States. Water Resour. Res. 2001, 37, 1771–1781. [Google Scholar] [CrossRef]
- Dooge, J.C. Sensitivity of runoff to climate change: A Hortonian approach. Bull. Am. Mereorol. Soc. 1992, 73, 2013–2024. [Google Scholar] [CrossRef]
- Arora, V.K. The use of the aridity index to assess climate change effect on annual runoff. J. Hydrol. 2002, 265, 164–177. [Google Scholar] [CrossRef]
- Freund, E.R.; Kirchner, J.W. A Budyko framework for estimating how spatial heterogeneity and lateral moisture redistribution affect average evapotranspiration rates as seen from the atmosphere. Hydrol. Earth Syst. Sci. 2017, 21, 217. [Google Scholar] [CrossRef]
- Wang, D.; Zhao, J.; Tang, Y.; Sivapalan, M. A thermodynamic interpretation of Budyko and L’vovich formulations of annual water balance: Proportionality Hypothesis and maximum entropy production. Water Resour. Res. 2015, 51, 3007–3016. [Google Scholar] [CrossRef]
- Greve, P.; Gudmundsson, L.; Orlowsky, B.; Seneviratne, S.I. Introducing a probabilistic Budyko framework. Geophys. Res. Lett. 2015, 42, 2261–2269. [Google Scholar] [CrossRef]
- Lintner, B.R.; Gentine, P.; Findell, K.L.; Salvucci, G.D. The Budyko and complementary relationships in an idealized model of large-scale land–atmosphere coupling. Hydrol. Earth Syst. Sci. 2015, 19, 2119. [Google Scholar] [CrossRef]
- Xue, L.; Yang, F.; Yang, C.; Chen, X.; Zhang, L.; Chi, Y.; Yang, G. Identification of potential impacts of climate change and anthropogenic activities on streamflow alterations in the Tarim River Basin, China. Sci. Rep. 2017, 7, 8254. [Google Scholar] [CrossRef] [PubMed]
- Schreiber, P. Über die Beziehungen zwischen dem Niederschlag und der Wasserführung der Flüsse in Mitteleuropa. Z. Meteorol. 1904, 21, 441–452. [Google Scholar]
- Ol’Dekop, E.M. On evaporation from the surface of river basins. Trans. Meteorol. Obs. 1911, 4, 200. [Google Scholar]
- Turc, L. The water balance of soils. Relation between precipitation, evaporation and flow. Ann. Agron. 1954, 5, 491–569. [Google Scholar]
- Pike, J.G. The estimation of annual run-off from meteorological data in a tropical climate. J. Hydrol. 1964, 2, 116–123. [Google Scholar] [CrossRef]
- Fu, G.; Charles, S.P.; Chiew, F.H. A two-parameter climate elasticity of streamflow index to assess climate change effects on annual streamflow. Water Resour. Res. 2007, 43, W11419. [Google Scholar] [CrossRef]
- Mezentsev, V.S. More on the calculation of average total evaporation. Meteorol. Gidrol. 1955, 5, 23–31. [Google Scholar]
- Choudhury, B. Evaluation of an empirical equation for annual evaporation using field observations and results from a biophysical model. J. Hydrol. 1999, 216, 99–110. [Google Scholar] [CrossRef]
- Yang, H.; Yang, D.; Lei, Z.; Sun, F. New analytical derivation of the mean annual water-energy balance equation. Water Resour. Res. 2008, 44, W03410. [Google Scholar] [CrossRef]
- Milly, P.C.D. An analytic solution of the stochastic storage problem applicable to soil water. Water Resour. Res. 1993, 29, 3755–3758. [Google Scholar] [CrossRef]
- Porporato, A.; Daly, E.; Rodriguez-Iturbe, I. Soil water balance and ecosystem response to climate change. Am. Nat. 2004, 164, 625–632. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Dawes, W.R.; Walker, G.R. Response of mean annual evapotranspiration to vegetation changes at catchment scale. Water Resour. Res. 2001, 37, 701–708. [Google Scholar] [CrossRef]
- Wang, D.; Tang, Y. A one-parameter Budyko model for water balance captures emergent behavior in darwinian hydrologic models. Geophys. Res. Lett. 2014, 41, 4569–4577. [Google Scholar] [CrossRef]
- Water Resources Agency 2017 Hydrological Year Book of Taiwan. Ministry of Economic Affairs; Water Resources Agency 2017 Hydrological Year Book of Taiwan: Taipei, Taiwan, 2017. (In Chinese)
- Wang, C.H. The impacts of climate change on the groundwater environment of Taiwan: Retrospective and prospective views. Cent. Geol. Surv. 2007, 18, 239–255. (In Chinese) [Google Scholar]
- Thiessen, A.H. Precipitation averages for large areas. Mon. Weather Rev. 1911, 39, 1082–1089. [Google Scholar] [CrossRef]
- Martens, B.; Miralles, D.G.; Lievens, H.; van der Schalie, R.; de Jeu, R.A.M.; Fernández-Prieto, D.; Beck, H.E.; Dorigo, W.A.; Verhoest, N.E.C. GLEAM v3: Satellite-based land evaporation and root-zone soil moisture. Geosci. Model Dev. 2017, 10, 1903–1925. [Google Scholar] [CrossRef]
- Miralles, D.G.; Holmes, T.R.H.; de Jeu, R.A.M.; Gash, J.H.; Meesters, A.G.C.A.; Dolman, A.J. Global land-surface evaporation estimated from satellite-based observations. Hydrol. Earth Syst. Sci. 2011, 15, 453–469. [Google Scholar] [CrossRef]
- Priestley, C.H.B.; Taylor, R.J. On the assessment of surface heat flux and evaporation using large-scale parameters. Mon. Weather Rev. 1972, 100, 81–92. [Google Scholar] [CrossRef]
- Mann, H.B. Nonparametric tests against trend. Econom. J. Econom. Soc. 1945, 13, 245–259. [Google Scholar] [CrossRef]
- Kendall, M.G. Rank Correlation Measures [M]; Charles Griffin: London, UK, 1975. [Google Scholar]
- Hamed, K.H.; Rao, A.R. A modified Mann-Kendall trend test for autocorrelated data. J. Hydrol. 1998, 204, 182–196. [Google Scholar] [CrossRef]
- Amirataee, B.; Montaseri, M. The performance of SPI and PNPI in analyzing the spatial and temporal trend of dry and wet periods over Iran. Nat. Hazards 2017, 86, 89–106. [Google Scholar] [CrossRef]
- Pettitt, A.N. A non-parametric approach to the change-point problem. Appl. Stat. 1979, 28, 126–135. [Google Scholar] [CrossRef]
- Yang, H.; Qi, J.; Xu, X.; Yang, D.; Lv, H. The regional variation in climate elasticity and climate contribution to runoff across China. J. Hydrol. 2014, 517, 607–616. [Google Scholar] [CrossRef]
- Wu, J.; Miao, C.; Wang, Y.; Duan, Q.; Zhang, X. Contribution analysis of the long-term changes in seasonal runoff on the Loess Plateau, China, using eight Budyko-based methods. J. Hydrol. 2017, 545, 263–275. [Google Scholar] [CrossRef]
- Choate, M.; Steinwand, D.; Rengarajan, R. Multispectral Scanner (MSS) Geometric Algorithm Description Document; USGS Landsat Project Documentation, LS-IAS: Delhi, India, 2012; Volume 6.
- Engebretson, C. Landsat Thematic Mapper (TM) Level 1 DFCB. USGS Landsat Project Documentation. 2018. Available online: https://prd-wret.s3-us-west-2.amazonaws.com/assets/palladium/production/atoms/files/LSDS-284_Landsat4-5TM-Level1DFCB-v10.pdf (accessed on 26 September 2019).
- Jaramillo, F.; Cory, N.; Arheimer, B.; Laudon, H.; Van Der Velde, Y.; Hasper, T.B.; Uddling, J. Dominant effect of increasing forest biomass on evapotranspiration: Interpretations of movement in Budyko space. Hydrol. Earth Syst. Sci. 2018, 22, 567–580. [Google Scholar] [CrossRef]
- Guzha, A.C.; Rufino, M.C.; Okoth, S.; Jacobs, S.; Nóbrega, R.L.B. Impacts of land use and land cover change on surface runoff, discharge and low flows: Evidence from East Africa. J. Hydrol. Regional Stud. 2018, 15, 49–67. [Google Scholar] [CrossRef]
Model | Budyko Curve Equation | Parameter | Reference |
---|---|---|---|
Budyko–Schreiber | None | Schreiber [36] | |
Budyko–Ol’dekop | None | Ol’dekop [37] | |
Budyko | None | Budyko [21,22] | |
Budyko–Turc–Pike | None | Turc [38]; Pike [39] | |
Budyko–Fu | m | Fu [40] | |
Budyko–Mezentsev–Choudhury–Yang | n | Mezentsev [41]; Choudhury [42]; Yang et al. [43] | |
Budyko–Mill–Porporato | Milly [44]; Porporato et al. [45] | ||
Budyko–Zhang | Zhang et al. [46] | ||
Budyko–Wang | Wang and Tang [47] |
River Basin | Drainage Area (km2) | Average Elevation (m) | No. | Type | Station | TM2_X (TWD67) | TM2_Y (TWD67) |
---|---|---|---|---|---|---|---|
Lanyang River Basin | 820.69 | 955.2 | 1 | Streamflow gauging station | Lan Yang Bridge | 327,262.2 | 2,734,754 |
2 | Rainfall station | Nan Shan | 287,634 | 2,703,687 | |||
3 | Liu Mao An | 294,890 | 2,714,194 | ||||
4 | Tu Chang-1 | 299,456 | 2,718,763.39 | ||||
5 | Fan Fan-2 | 302,389 | 2,723,226 | ||||
6 | Xin Bei Cheng | 324,950 | 2,730,841 | ||||
Dahan River Basin | 622.80 | 1614.81 | 7 | Streamflow gauging station | Xia Yun | 285,813.3 | 2,740,336.8 |
8 | Rainfall station | Xiu Luan | 278,034.4 | 2,723,777.7 | |||
9 | An Bu | 277,705.5 | 2,729,116.5 | ||||
10 | San Guang | 286,273.5 | 2,729,607.8 | ||||
Keelung River Basin | 204.41 | 251.78 | 11 | Streamflow gauging station | Wu Tu | 319,419.4 | 2,774,923.7 |
12 | Rainfall station | Huo Shao Liao | 324,813.7 | 2,764,092.9 | |||
13 | Rui Fang-2 | 330,186.2 | 2,778,442.8 | ||||
14 | Wu Du | 319,447.5 | 2,774,911.4 | ||||
Fengshan River Basin | 208.06 | 258.84 | 15 | Streamflow gauging station | Hsin Pu-2 | 255,810.3 | 2,746,676 |
16 | Rainfall station | Guanxi 3 | 267,417.1 | 2,741,651.3 | |||
17 | Xinpu 1 | 256,388.7 | 2,747,090.2 | ||||
Youluo River Basin | 139.07 | 977.80 | 18 | Streamflow gauging station | Nei Wan | 267,503.3 | 2,733,084 |
19 | Rainfall station | Niaozuishan | 277,875.8 | 2,734,904.7 | |||
20 | Meihua | 270,281.7 | 2,730,286.1 | ||||
Shangping River Basin | 221.73 | 1251.48 | 21 | Streamflow gauging station | Shang Ping | 260,738.5 | 2,729,330 |
22 | Rainfall station | Taigenan | 264,159.4 | 2,724,487.3 | |||
23 | Qingguan | 259,655.8 | 2,718,705.8 |
River Basin | Period | Variable | Z | Significant Trend (α = 10%) | PMAX | Point of Highest Probability |
---|---|---|---|---|---|---|
Lanyang River Basin | 1980–2017 | P | −0.05 | None | 0.41 | 2001 |
1980–2017 | E0 | 0.55 | None | 0.54 | 1990 | |
1980–2017 | Q | 2.01 | Exist | 0.97 | 1993 | |
Keelung River Basin | 1980–2017 | P | −0.86 | None | 0.66 | 1990 |
1980–2017 | E0 | 1.51 | None | 0.89 | 1990 | |
1980–2017 | Q | −1.31 | None | 0.94 | 1990 | |
Dahan River Basin | 1980–2017 | P | 0.11 | None | 0.36 | 2008 |
1980–2017 | E0 | 1.11 | None | 0.73 | 1990 | |
1980–2017 | Q | −0.40 | None | 0.75 | 2008 | |
Fengshan River Basin | 1981–2017 | P | −0.14 | None | 0.49 | 1986 |
1980–2017 | E0 | 1.58 | None | 0.86 | 2001 | |
1980–2017 | Q | −0.54 | None | 0.73 | 1990 | |
Youluo River Basin | 1980–2017 | P | 0.38 | None | 0.42 | 2003 |
1980–2017 | E0 | 1.38 | None | 0.82 | 2001 | |
1980–2017 | Q | 0.58 | None | 0.78 | 2003 | |
Shangping River Basin | 1980–2017 | P | 0.23 | None | 0.41 | 2003 |
1980–2017 | E0 | 1.38 | None | 0.83 | 2001 | |
1980–2017 | Q | 0.48 | None | 0.76 | 2003 |
River Basin | Period | P (mm) | Q (mm) | E0 (mm) | m | n | ΔQ | B–F | B–M–C–Y | |||
---|---|---|---|---|---|---|---|---|---|---|---|---|
mm | % | ηc1imate | ηnon-climate | ηclimate | ηnon-climate | |||||||
Lanyang | 1980–1993 | 2810.38 | 1926.62 | 1049.09 | 2.07 | 1.33 | ||||||
1994–2017 | 2752.51 | 2552.86 | 1050.16 | 1.10 | 0.32 | 626.24 | 32.50% | −9.01% | 109.01% | −8.99% | 108.99% | |
Keelung | 1980–1990 | 4712.45 | 4376.79 | 1119.50 | 1.14 | 0.37 | ||||||
1991–2017 | 4130.50 | 3584.32 | 1146.11 | 1.28 | 0.53 | −792.47 | −18.11% | 71.75% | 28.25% | 71.30% | 28.70% | |
Dahan | 1980–2017 | 2184.87 | 1850.40 | 1057.56 | 1.21 | 0.46 | - | - | - | - | - | - |
Fengshan | 1981–2017 | 2043.57 | 1559.83 | 1086.29 | 1.37 | 0.64 | - | - | - | - | - | - |
Youluo | 1980–2017 | 2851.03 | 2298.69 | 1063.48 | 1.37 | 0.64 | - | - | - | - | - | - |
Shangping | 1980–2017 | 2449.42 | 2089.31 | 1082.52 | 1.23 | 0.48 | - | - | - | - | - | - |
NDVI Difference | 1978–1993 | 1993–2004 | 2004–2018 |
---|---|---|---|
−1.00~0.30 | 3.11% | 3.51% | 29.49% |
−0.30~−0.20 | 2.31% | 5.28% | 44.46% |
−0.20~−0.10 | 3.59% | 14.79% | 12.09% |
−0.10~0 | 12.14% | 47.74% | 5.73% |
0~0.05 | 21.13% | 18.06% | 2.30% |
0.05~0.10 | 28.91% | 4.70% | 2.58% |
0.10~0.15 | 16.27% | 1.88% | 2.04% |
0.15~0.20 | 6.38% | 1.12% | 0.72% |
0.20~0.25 | 2.71% | 0.86% | 0.30% |
0.25~0.30 | 1.43% | 0.70% | 0.16% |
0.30~1.00 | 2.02% | 1.36% | 0.16% |
River Basin | Period | B–F | B–M–C–Y | ||||
---|---|---|---|---|---|---|---|
Lanyang | 1980–1993 | 1.37 | −0.37 | −0.27 | 1.36 | −0.36 | −0.18 |
1994–2017 | 1.05 | −0.05 | −0.73 | 1.05 | −0.04 | −0.16 | |
Keelung | 1980–1990 | 1.05 | −0.05 | −0.49 | 1.05 | −0.05 | −0.13 |
1991–2017 | 1.11 | −0.1 | −0.46 | 1.1 | −0.1 | −0.18 | |
Dahan | 1980–2017 | 1.11 | −0.11 | −0.79 | 1.11 | −0.1 | −0.26 |
Fengshan | 1981–2017 | 1.19 | −0.2 | −0.75 | 1.18 | −0.19 | −0.33 |
Youluo | 1980–2017 | 1.17 | −0.16 | −0.54 | 1.16 | −0.16 | −0.24 |
Shangping | 1980–2017 | 1.11 | −0.11 | −0.72 | 1.1 | −0.11 | −0.25 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, C.-H.; Yeh, H.-F. Impact of Climate Change and Human Activities on Streamflow Variations Based on the Budyko Framework. Water 2019, 11, 2001. https://doi.org/10.3390/w11102001
Lee C-H, Yeh H-F. Impact of Climate Change and Human Activities on Streamflow Variations Based on the Budyko Framework. Water. 2019; 11(10):2001. https://doi.org/10.3390/w11102001
Chicago/Turabian StyleLee, Chung-Hsun, and Hsin-Fu Yeh. 2019. "Impact of Climate Change and Human Activities on Streamflow Variations Based on the Budyko Framework" Water 11, no. 10: 2001. https://doi.org/10.3390/w11102001
APA StyleLee, C.-H., & Yeh, H.-F. (2019). Impact of Climate Change and Human Activities on Streamflow Variations Based on the Budyko Framework. Water, 11(10), 2001. https://doi.org/10.3390/w11102001