Engineering Analysis of Plant and Fungal Contributions to Bioretention Performance
Abstract
:1. Introduction
2. Materials and Methods
2.1. Calibrating Bioretention Soil Composition
2.2. Calibrating BSM Installation Parameters
2.2.1. Bulk Density
2.2.2. Saturated Hydraulic Conductivity
2.2.3. Soil Moisture Characteristic
2.3. Installation of Mesocosms
2.4. Mesocosm Hydraulic Loading Parameters
2.5. Mesocosm Stormwater Sampling
2.6. Statistical Analyses
3. Results
3.1. Calibrating Bioretention Soil Composition
3.2. Calibrating BSM Installation Parameters
3.2.1. Bulk Density and Saturated Hydraulic Conductivity
3.2.2. Soil Moisture Characteristic
3.3. Mesocosm Installation Parameters
3.4. Mesocosm Hydraulic Loading
3.5. Stormwater Sampling
3.6. Statistical Analysis
3.6.1. Univariate Trends
3.6.2. Multivariate Trends
4. Discussion
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Disclaimer
Appendix A
Parameter Class | Parameters | Mean | SD | Detection Limit |
Total Metals | Aluminum (μg/L) | 876 | 570 | 0.5 |
Antimony (μg/L) | 7.71 | 11.4 | 0.2 | |
Arsenic (μg/L) | 3.25 | 2.99 | 0.02 | |
Barium (μg/L) | 68.5 | 19.6 | 0.1 | |
Copper (μg/L) | 40.5 | 9.15 | 0.1 | |
Lead (μg/L) | 10.9 | 6.90 | 0.05 | |
Manganese (μg/L) | 77.0 | 30.1 | 0.03 | |
Molybdenum (μg/L) | 7.20 | 13.0 | 0.05 | |
Nickel (μg/L) | 6.62 | 9.56 | 0.05 | |
Selenium (μg/L) | 1.49 | 2.05 | 0.25 | |
Silver (μg/L) | 3.62 | 3.89 | 0.05 | |
Thallium (μg/L) | 0.408 | 0.559 | 0.01 | |
Vanadium (μg/L) | 2.45 | 1.36 | 0.02 | |
Zinc (μg/L) | 123 | 51.0 | 0.5 | |
Dissolved Metals | Aluminum (μg/L) | 53.6 | 61.1 | 0.5 |
Antimony (μg/L) | 3.02 | 0.936 | 0.2 | |
Arsenic (μg/L) | 1.33 | 0.520 | 0.02 | |
Barium (μg/L) | 40.1 | 9.90 | 0.25 | |
Copper (μg/L) | 16.7 | 5.37 | 0.1 | |
Lead (μg/L) | 0.805 | 1.33 | 0.05 | |
Manganese (μg/L) | 13.8 | 16.4 | 0.03 | |
Molybdenum (μg/L) | 3.5 | 1.81 | 0.05 | |
Nickel (μg/L) | 2.04 | 0.773 | 0.05 | |
Selenium (μg/L) | 0.168 | 0.093 | 0.25 | |
Silver (μg/L) | 0.200 | 0.099 | 0.05 | |
Thallium (μg/L) | <DL | <DL | 0.01 | |
Vanadium (μg/L) | 1.02 | 0.390 | 0.02 | |
Zinc (μg/L) | 43.6 | 26.9 | 0.5 | |
Nutrients | NH4 (mg/L) | 0.257 | 0.096 | 0.005 |
TKN (mg/L) | 1.28 | 0.179 | 0.1 | |
NO3/NO2 (mg/L) | 0.663 | 0.333 | 0.01 | |
Ortho-Phosphorus (mg/L) | 0.027 | 0.030 | 0.005 | |
Total Phosphorus (mg/L) | 0.097 | 0.022 | 0.005 | |
Conventionals, Microbiology | Alkalinity (mg/L) | 38.4 | 15.4 | 1 |
TSS (mg/L) | 34.3 | 19.4 | 1 | |
pH (-log[H3O]) | 6.76 | 0.505 | 0.1 | |
BOD (mg/L) | 17.9 | 11.6 | 2 | |
DOC (mg/L) | 7.86 | 5.24 | 0.5 | |
TOC (mg/L) | 14.69 | 10.3 | 0.2 | |
E. coli (MPN/100 mL) | 3090 | 1640 | 1 | |
Fecal coliform (CFU/100 mL) | 2960 | 2060 | 1 | |
PAH Congeners | Naphthalene (μg/L) | 0.023 | 0.014 | 0.012 |
1-Methylnaphthalene (μg/L) | 0.011 | 0.007 | 0.012 | |
2-Methylnaphthalene (μg/L) | 0.011 | 0.005 | 0.012 | |
Acenaphthylene (μg/L) | 0.011 | 0.010 | 0.012 | |
Acenaphthene (μg/L) | 0.007 | 0.002 | 0.012 | |
Dibenzofuran (μg/L) | 0.007 | 0.002 | 0.012 | |
Fluorene (μg/L) | 0.007 | 0.002 | 0.012 | |
Phenanthrene (μg/L) | 0.022 | 0.025 | 0.012 | |
Anthracene (μg/L) | 0.033 | 0.036 | 0.012 | |
Fluoranthene (μg/L) | 0.030 | 0.034 | 0.012 | |
Pyrene (μg/L) | 0.046 | 0.051 | 0.012 | |
Benzo(a)anthracene (μg/L) | 0.047 | 0.048 | 0.012 | |
Chrysene (μg/L) | 0.080 | 0.083 | 0.012 | |
Benzo(a)pyrene (μg/L) | 0.042 | 0.026 | 0.012 | |
Indeno(1,2,3-cd)pyrene (μg/L) | 0.029 | 0.029 | 0.012 | |
Dibenzo(a,h)anthracene (μg/L) | 0.027 | 0.043 | 0.012 | |
Benzo(g,h,i)perylene (μg/L) | 0.034 | 0.030 | 0.012 | |
Perylene (μg/L) | 0.044 | 0.036 | 0.012 |
References
- National Academy of Sciences. Urban Stormwater Management in the United States; The National Academies Press: Washington, DC, USA, 2008; Volume 610. [Google Scholar] [CrossRef]
- Davis, A.P.; Hunt, W.F.; Traver, R.G.; Clar, M. Bioretention Technology: Overview of Current Practice and Future Needs. J. Environ. Eng. 2009, 135, 109–117. [Google Scholar] [CrossRef]
- Herrera Environmental Consultants. Pacific Northwest Bioretention Performance Study Synthesis Report, Prepared for the City of Redmond. Available online: http://www.wastormwatercenter.org/news/?id=1269 (accessed on 7 March 2017).
- Herrera Environmental Consultants. Analysis of Bioretention Soil Media for Improved Nitrogen, Phosphorus, and Copper Retention, Prepared for Kitsap County Public Works. Available online: www.wastormwatercenter.org/file_viewer.php?id=3491 (accessed on 24 February 2017).
- Lefevre, G.H.; Paus, K.H.; Natarajan, P.; Gulliver, J.S.; Novak, P.J.; Hozalski, R.M. Review of dissolved pollutants in urban storm water and their removal and fate in bioretention cells. J. Environ. Eng. 2015, 141, 04014050. [Google Scholar] [CrossRef]
- Cording, A. Evaluating Stormwater Pollutant Removal Mechanisms by Bioretention in the Context of Climate Change. Ph.D. Thesis, University of Vermont, Burlington Vermont, VT, USA, 2016; p. 541. [Google Scholar]
- Washington State Department of Ecology. Stormwater Management Manual for Western Washington. Publication 14-10-055. Available online: https://ecology.wa.gov/Regulations-Permits/Guidance-technical-assistance/Stormwater-permittee-guidance-resources/Stormwater-manuals (accessed on 24 March 2014).
- Mullane, J.; Flury, M.; Iqbal, H.; Shi, Z. Intermittent rainstorms cause pulses of nitrogen, phosphorus, and copper in leachate from compost in bioretention systems. Sci. Total Environ. 2015, 537, 294–303. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Herrera Environmental Consultants. Pollutant Export from Bioretention Soil Mix, 185th Ave NE, Redmond, WA, USA. Available online: http://www.redmond.gov/Environment/StormwaterUtility/LID/185ave/ (accessed on 5 May 2016).
- Paus, K.H.; Morgan, J.; Gulliver, J.S.; Hozalski, R.M. Effects of bioretention media compost volume fraction on toxic metals removal, hydraulic conductivity, and phosphorus release. J. Environ. Eng. 2014, 140. [Google Scholar] [CrossRef]
- Howie, D.C. Memo: Focus on Bioretention Soil Media. Washington State Department of Ecology Water Quality Program. Publication 13-10-017. Available online: https://fortress.wa.gov/ecy/paris/ DownloadDocument.aspx?id=204469 (accessed on 16 March 2018).
- McIntyre, J.K.; Lundin, J.I.; Cameron, J.R.; Scholz, N.L. Interspecies variation in the susceptibility of adult Pacific salmon to toxic urban stormwater runoff. Environ. Pollut. 2018, 238, 196–203. [Google Scholar] [CrossRef] [PubMed]
- McIntyre, J.K.; Davis, J.; Hinman, C.; Macneale, K.H.; Anulacion, B.F.; Scholz, N.L.; Stark, J.D. Soil bioretention protects juvenile salmon and their prey from the toxic impacts of urban stormwater runoff. Chemosphere 2015, 132, 213–219. [Google Scholar] [CrossRef] [PubMed]
- Palmer, E.T.; Poor, C.J.; Hinman, C.; Stark, J.D. Nitrate and phosphate removal through enhanced bioretention media: Mesocosm study. Water Environ. Res. 2013, 85, 823. [Google Scholar] [CrossRef] [PubMed]
- Bratieres, K.; Fletcher, T.; Deletic, A.; Zinger, Y. Nutrient and sediment removal by stormwater biofilters: A large-scale design optimization study. Water Res. 2008, 42, 3930–3940. [Google Scholar] [CrossRef] [PubMed]
- Thomas, S.A.; Aston, L.M.; Woodruff, D.L.; Cullinan, V.I. Field Demonstration of Mycoremediation for Removal of Fecal Coliform Bacteria and Nutrients in the Dungeness Watershed, Washington; Final Report PNWD-4054-1; Pacific Northwest National Laboratory: Richland, WA, USA, 2009.
- Taylor, A.; Flatt, A.; Beutel, M.; Wolff, M.; Brownson, K.; Stamets, P. Removal of Escherichia coli from Synthetic Stormwater Using Mycofiltration. Ecol. Eng. 2015, 78, 79–86. [Google Scholar] [CrossRef]
- Steffen, K.T.; Schubert, S.; Tuomela, M.; Hatakka, A.; Hofrichter, M. Enhancement of bioconversion of high-molecular mass polycyclic aromatic hydrocarbons in contaminated non-sterile soil by litter-decomposing fungi. Biodegradation 2007, 18, 359–369. [Google Scholar] [CrossRef] [PubMed]
- Mohapatra, D.; Rath, S.K.; Mohapatra, P.K. Bioremediation of Insecticides by White-Rot Fungi and Its Environmental Relevance. In Mycoremediation and Environmental Sustainability. Fungal Biology; Prasad, R., Ed.; Springer: Cham, Switzerland, 2018. [Google Scholar] [CrossRef]
- ASTMD2216-10. ASTM D2216-10-Standard Test Methods for Laboratory Determination of Water (Moisture) Content of Soil and Rock by Mass; ASTM International: West Conshohocken, PA, USA, November 1988; pp. 1–7. [Google Scholar] [CrossRef]
- ASTMD1557-12. Standard Test Methods for Laboratory Compaction Characteristics of Soil Using Modified Effort; ASTM International: West Conshohocken, PA, USA, 2012. [Google Scholar] [CrossRef]
- Flury, M. Soil Physics Laboratory Manual. Department of Crop and Soil Sciences; Washington State University: Pullman, WA, USA, 2015. [Google Scholar]
- Washington State Department of Transportation. Traffic Data Geoportal. Available online: http://www.wsdot.wa.gov/mapsdata/tools/trafficplanningtrends.htm (accessed on May 9 2018).
- R Core Team. R: A Language and Environment for Statistical Computing; Version 3.4.0.; R Foundation for Statistical Computing: Vienna, Austria, 2017; Available online: https://www.R-project.org (accessed on 16 March 2018).
- RStudio Team. RStudio: Integrated Development for R. Version 1.0.143; RStudio, Inc.: Boston, MA, USA, 2016; Available online: http://www.rstudio.com (accessed on 16 March 2018).
- Wickham, H.; Francois, R.; Henry, L.; Müller, K.; Wickham, H. Dplyr: A Grammar of Data Manipulation. Available online: https://CRAN.R-project.org/package=dplyr (accessed on 16 March 2018).
- Fox, J.; Weisberg, S. An {R} Companion to Applied Regression, 2nd ed.; Sage: Thousand Oaks, CA, USA; Available online: http://socserv.socsci.mcmaster.ca/jfox/Books?Companion (accessed on 16 March 2018).
- Korkmaz, S.; Goksuluk, D.; Zararsiz, G. MVN: An R Package for Assessing Multivariate Normality. R J. 2014, 6, 151–162. [Google Scholar]
- Revelle, W. Psych: Procedures for Personality and Psychological Research; Northwestern University: Evanston, IL, USA; Available online: https://CRAN.R-project.org/package=psych (accessed on 16 March 2018).
- Oksanen, J.; Blanchet, F.G.; Friendly, M.; Kindt, R.; Legendre, P.; McGlinn, D.; Minchin, P.R.; O’Hara, R.B.; Simpson, G.L.; Solymos, P.; et al. Vegan: Community Ecology Package. Available online: https://CRAN.R-project.org/package=vegan (accessed on 16 March 2018).
- Sullivan, D.M.; Stevens, R.G. Agricultural Phosphorus Management Using the Oregon/Washington Phosphorus Indexes; Oregon State University Extension Service. Publication EM 8848-E.; Oregon State University: Corvallis, OR, USA, 2003. [Google Scholar]
- Aurora, D. Mushrooms Demystified: A Comprehensive Guide to the Fleshy Fungi, 2nd ed.; Ten Speed Press: Berkeley, CA, USA, 1986. [Google Scholar]
- Deacon, J. Fungal Biology, 4th ed.; Blackwell Publishing: Malden, MA, USA, 2006. [Google Scholar]
- Dighton, J. Fungi in Ecosystem Processes, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2016. [Google Scholar]
- Diez, J.; Elosegi, A.; Chauvet, E.; Pozo, J. Breakdown of wood in the Agüera stream. Freshw. Biol. 2002, 47, 2205–2215. [Google Scholar] [CrossRef]
- Siriwardene, N.R.; Deletic, A.; Fletcher, T.D. Clogging of stormwater gravel infiltration systems and filters: Insights from a laboratory study. Water Res. 2007, 41, 1433–1440. [Google Scholar] [CrossRef] [PubMed]
- Weindorf, D.C.; Wittie, R. Determining Particle Density in Dairy Manure Compost. Tex. J. Agric. Nat. Resour. 2003, 16, 60–63. [Google Scholar]
Value | Al | Sb | As | Ba | Cd | Cr | Co | Cu | Pb | Mg | Ni | Va | Zn |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Compost | |||||||||||||
Mean | 5540 | 0.703 | 7.95 | 88.3 | 0.449 | 16.6 | 5.10 | 39.9 | 35.7 | 264 | 11.3 | 15.3 | 148 |
St. Dev | 581.3 | 0.465 | 4.64 | 6.8 | 0.054 | 1.7 | 2.20 | 8.2 | 7.1 | 81 | 1.1 | 2.1 | 35 |
RSD (%) 1 | 9.5 | 1.5 | 1.7 | 13.1 | 8.3 | 9.9 | 2.3 | 4.9 | 5.1 | 3.3 | 10.5 | 7.3 | 4.2 |
D.L. 1 | 0.86 | 0.086 | 0.052 | 0.086 | 0.086 | 0.086 | 0.86 | 0.086 | 0.086 | 0.086 | 0.086 | 0.086 | 0.17 |
Sand | |||||||||||||
Mean | 8220 | -- | 0.53 | 20.9 | 0.051 | 14.3 | 5.89 | 16.0 | 1.2 | 183 | 17.4 | 26.6 | 17.4 |
St. Dev | 632.2 | -- | 0.16 | 3.7 | 0.021 | 4.7 | 0.14 | 1.3 | 0.3 | 15 | 3.3 | 5.6 | 1 |
RSD (%) 1 | 13.0 | -- | 3.3 | 5.6 | 2.4 | 3.0 | 41.5 | 12.0 | 3.9 | 12.0 | 5.3 | 4.8 | 19.2 |
D.L. 1 | 0.43 | 0.043 | 0.025 | 0.043 | 0.043 | 0.086 | 0.86 | 0.086 | 0.086 | 0.086 | 0.086 | 0.086 | 0.17 |
Value | Total C (%) | Total N (%) | Total P (mg kg−1) | NH4-N (mg kg−1) | NO3-N (mg kg−1) | Olsen P (mg kg−1) | CEC (meq 100 g−1) | pH -log [H3O+] |
---|---|---|---|---|---|---|---|---|
Mean | 1.8 | 0.14 | 678 | 1.9 | 52 | 29 | 1.8 | 7.1 |
St. Dev. | 0.2 | 0.01 | 44 | 0.3 | 10 | 4 | 0.4 | 0.1 |
RSD (%) 1 | 13 | 5.6 | 6.5 | 13 | 20 | 13 | 4.6 | 0.8 |
D.L. 1 | 0.01 | 0.02 | 4.3 | 0.7 | 0.8 | 0.9 | 0.1 | 0.1 |
Date | Days in Operation | Total Vol. TTD 1 (m3) | Total Vol. TTD 1 (PVE2) | Total Vol. TTD 1 (cm) | Equiv. Precip. TTD 1 (cm at 20:1 rate) |
---|---|---|---|---|---|
5 April 2017 | 49 | 1.2 | 26.3 | 467 | 23 |
8 June 2017 | 113 | 1.9 | 42.8 | 760 | 38 |
18 October 2017 | 245 | 2.4 | 52.1 | 924 | 46 |
19 December 2017 | 307 | 3.9 | 85.3 | 1512 | 76 |
22 March 2018 | 400 | 6.9 | 151 | 2680 | 134 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Taylor, A.; Wetzel, J.; Mudrock, E.; King, K.; Cameron, J.; Davis, J.; McIntyre, J. Engineering Analysis of Plant and Fungal Contributions to Bioretention Performance. Water 2018, 10, 1226. https://doi.org/10.3390/w10091226
Taylor A, Wetzel J, Mudrock E, King K, Cameron J, Davis J, McIntyre J. Engineering Analysis of Plant and Fungal Contributions to Bioretention Performance. Water. 2018; 10(9):1226. https://doi.org/10.3390/w10091226
Chicago/Turabian StyleTaylor, Alex, Jill Wetzel, Emma Mudrock, Kennith King, James Cameron, Jay Davis, and Jenifer McIntyre. 2018. "Engineering Analysis of Plant and Fungal Contributions to Bioretention Performance" Water 10, no. 9: 1226. https://doi.org/10.3390/w10091226